

Informatik und Mikrosystemtechnik Zweibrücken

Dipl. Inf. (FH) Stefan Konrath <u>stefan.konrath@hs-kl.de</u>, Raum O228, Tel. 0631-3724-5357 <u>http://www.hs-kl.de/~stefan.konrath</u>

Technische Informatik

Verfügbare Digitalbausteine mit Datenblättern

		Verfügbare	Digital-Bausteine		
Bezeichnung	Funktion	Bezeichnung	Funktion	Bezeichnung	Funktion
SN74LS00	4 x NAND mit je 2 Eingängen	SN74LS32	4 x OR mit je 2 Eingängen	SN74LS139	2 Bit Bin.Dekoder, DEMUX 2 zu 4
SN74LS02	4 x NOR mit je 2 Eingängen	SN74LS51	AND / NOR - Kombination	SN74L151	8 zu 1 Multiplexer
SN74LS04	6 x Inverter	SN74LS55 AND / NOR - Kombination		SN74L161	Synchr.prog. 4-Bit Bin.Zähler,Clr
SN74LS08	4 x AND mit je 2 Eingängen	SN74LS74	Dual-D-Flip-Flop	SN74LS175	Quad, synchr. D-Flip-Flop
SN74LS10	3 x NAND mit je 3 Eingängen	SN74LS85	4 Bit Vergleicher	SN74LS260	2 x NOR mit je 5 Eingängen
SN74LS11	3 x AND mit je 3 Eingängen	SN74LS86	4 x EXOR mit je 2 Eingängen	SN74LS393	Asynchr. 4 Bit Binärzähler
SN74LS14	6 x Inverter, Schmitt-Trigger	SN74LS125	4-Bus-Leitungs-treiber, tristate	SN74LS573	8-Bit Latch
SN74LS20	2 x NAND mit je 4 Eingängen	SN74LS126	4-Bus-Leitungs-treiber, tristate	GAL16V8	Siebensegment-Dekoder
SN74LS21	2 x AND mit je 4 Eingängen	SN74LS133	1 x NAND mit je 13 Eingängen		
SN74LS27	3 x NOR mit je 3 Eingängen	SN74LS136	4 x EXOR mit je 2 Eingängen		
SN74LS30	1 x NAND mit je 8 Eingängen	SN74LS138	3 Bit Bin.Dekoder, DEMUX 3 zu 8		

Stand : 21.10.2015

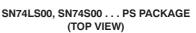
Stefan Konrath

 Package Options Include Plastic Small-Outline (D, NS, PS), Shrink Small-Outline (DB), and Ceramic Flat (W) Packages, Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) DIPs

SN5400 . . . J PACKAGE SN54LS00, SN54S00 . . . J OR W PACKAGE SN7400, SN74S00 . . . D, N, OR NS PACKAGE SN74LS00 . . . D, DB, N, OR NS PACKAGE (TOP VIEW)

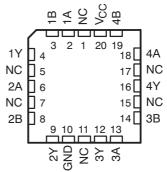
1A 1 14 V _{CC} 1B 2 13 4B 1Y 3 12 4A 2A 4 11 4Y 2B 5 10 3B 2Y 6 9 3A GND 7 8 3Y	1B [1Y [2A [2B [2Y [3 4 5	0	13 12 11 10 9		4A 4Y 3B 3A	
--	--------------------------------------	-------------	---	---------------------------	--	----------------------	--

SN5400 ... W PACKAGE (TOP VIEW) 1A 1 14 4Y 1B 2 13 4B 1Y 3 12 4A V_{CC} 4 11 GND 2Y 5 10 3B


ЗA

3Y

9


8

 Also Available as Dual 2-Input Positive-NAND Gate in Small-Outline (PS) Package

1A [1B [1Y [1 2 3	υ	8 7 6	V _{CC} 2B 2A 2Y
GND [4		5] 2Y

SN54LS00, SN54S00 . . . FK PACKAGE (TOP VIEW)

NC – No internal connection

description/ordering information

2A 6

2B 🛛 7

These devices contain four independent 2-input NAND gates. The devices perform the Boolean function $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

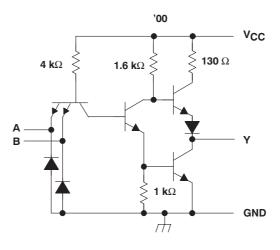
Copyright © 2003, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

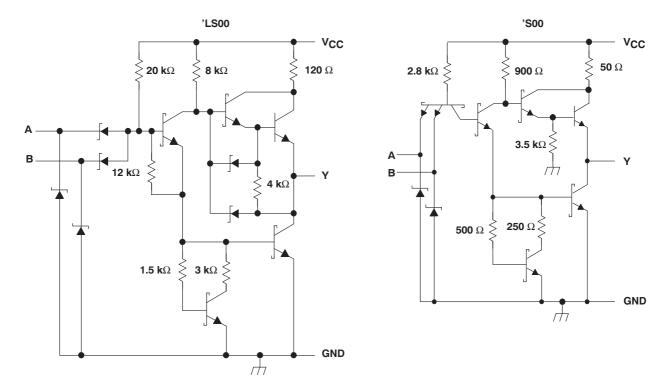
description/ordering information (continued)

Τ _Α	PACH	(AGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
			SN7400N	SN7400N
	PDIP – N	Tube	SN74LS00N	SN74LS00N
			SN74S00N	SN74S00N
		Tube	SN7400D	7400
		Tape and reel	SN7400DR	7400
	SOIC - D	Tube	SN74LS00D	1.000
	SOIC - D	Tape and reel	SN74LS00DR	LS00
0°C to 70°C		Tube	SN74S00D	
		Tape and reel	SN74S00DR	S00
			SN7400NSR	SN7400
	SOP – NS	Tape and reel	SN74LS00NSR	74LS00
			SN74S00NSR	74S00
	SOP - PS	Tana and soal	SN74LS00PSR	LS00
	SOP - PS	Tape and reel	SN74S00PSR	S00
	SSOP – DB	Tape and reel	SN74LS00DBR	LS00
			SNJ5400J	SNJ5400J
	CDIP – J	Tube	SNJ54LS00J	SNJ54LS00J
			SNJ54S00J	SNJ54S00J
			SNJ5400W	SNJ5400W
–55°C to 125°C	CFP – W	Tube	SNJ54LS00W	SNJ54LS00W
			SNJ54S00W	SNJ54S00W
	LCCC – FK	Tuba	SNJ54LS00FK	SNJ54LS00FK
	LUCC - FK	Tube	SNJ54S00FK	SNJ54S00FK

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.


FUNCTION TABLE (each gate)								
INP	UTS	OUTPUT						
Α	В	Y						
Н	Н	L						
L	Х	Н						
Х	L	н						


logic diagram, each gate (positive logic)

schematic

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Input voltage: '00, 'S00		/
Package thermal impedance, θ_{JA} (see Note 2):	D package	V
-	DB package	V
	N package 80°C/W	V
	NS package	V
	PS package	V
Storage temperature range, T _{stg}	-65°C to 150°C)

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package termal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

		SN5400				SN7400		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
IOH	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			16			16	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN5400		SN7400			
PARAMETER		TEST CONDITIO	NS+	MIN	ΤΥΡ [§]	MAX	MIN	ΤΥΡ [§]	MAX	UNIT
VIK	V _{CC} = MIN,	lj = -12 mA				-1.5			-1.5	V
VOH	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = -0.4 mA	2.4	3.4		2.4	3.4		V
V _{OL}	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
Ц	$V_{CC} = MAX,$	V _I = 5.5 V				1			1	mA
ΙΙΗ	V _{CC} = MAX,	VI = 2.4 V				40			40	μA
١L	V _{CC} = MAX,	V _I = 0.4 V				-1.6			-1.6	mA
los¶	$V_{CC} = MAX$			-20		-55	-18		-55	mA
ICCH	V _{CC} = MAX,	V _I = 0 V			4	8		4	8	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			12	22		12	22	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ All typical values are at V_{CC} = 5 V, $T_A = 25^{\circ}C$.

[¶] Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	FROM	TO (OUTPUT)	TEST CONDITIONS		SN5400 SN7400		UNIT
	(INPUT)	(001701)		MIN	TYP	MAX	
^t PLH	A or B	v	$R_{I} = 400 \Omega$, $C_{I} = 15 pF$		11	22	ns
^t PHL	700	I	11 <u>[</u> = 400 sz, 0 <u>[</u> = 15 pi		7	15	115

recommended operating conditions (see Note 4)

		SN54LS00		D	SN74LS00			UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	V	
IOH	High-level output current			-0.4			-0.4	mA	
IOL	Low-level output current			4			8	mA	
TA	Operating free-air temperature	-55		125	0		70	°C	

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS [†]		SN54LS00			S			
PARAMETER		TEST CONDITIO	NST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	lj = -18 mA				-1.5			-1.5	V
V _{OH}	V _{CC} = MIN,	$V_{IL} = MAX,$	I _{OH} = -0.4 mA	2.5	3.4		2.7	3.4		V
	V _{CC} = MIN,		I _{OL} = 4 mA		0.25	0.4		0.25	0.4	v
V _{OL}		V _{IH} = 2 V	I _{OL} = 8mA					0.35	0.5	V
Ц	V _{CC} = MAX,	VI = 7 V				0.1			0.1	mA
IIН	V _{CC} = MAX,	VI = 2.7V				20			20	μA
۱ _{IL}	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
IOS§	$V_{CC} = MAX$			-20		-100	-20		-100	mA
ICCH	V _{CC} = MAX,	V _I = 0 V			0.8	1.6		0.8	1.6	mA
ICCL	V _{CC} = MAX,	VI = 4.5 V			2.4	4.4		2.4	4.4	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. § Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		-	N54LS00		UNIT
	(INPOT)	(001901)			MIN	TYP	MAX	
^t PLH	A or B	v	$B_1 = 2kO$	CI = 15 pF		9	15	ns
^t PHL	7010	1	$R_L = 2 k\Omega$,	0 <u>[</u> = 15 pi		10	15	113

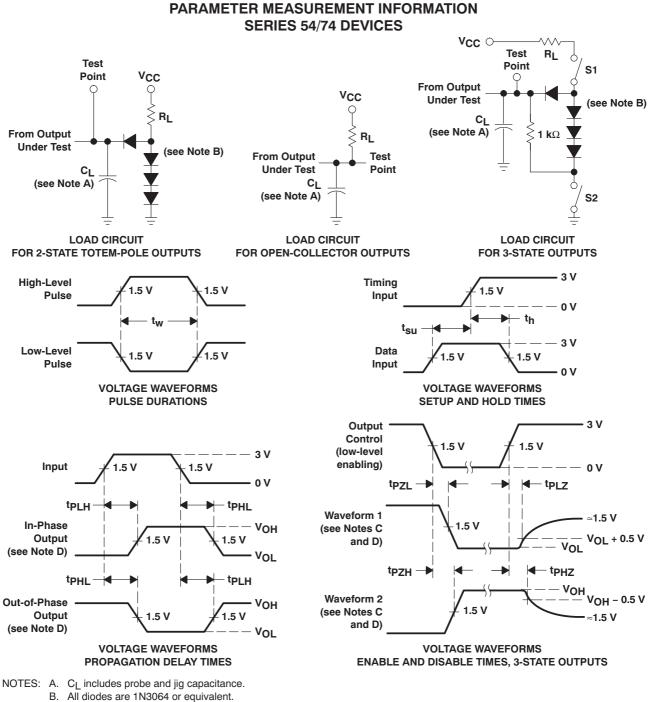
recommended operating conditions (see Note 5)

		S	SN54S00)	SN74S00			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-1			-1	mA
IOL	Low-level output current			20			20	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 5: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			. 4		SN54S00		S	SN74S00			
PARAMETER		TEST CONDITIO	NS⊺	MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT	
VIK	V _{CC} = MIN,	lj = -18 mA				-1.2			-1.2	V	
VOH	$V_{CC} = MIN,$	V _{IL} = 0.8 V,	I _{OH} = -1 mA	2.5	3.4		2.7	3.4		V	
V _{OL}	$V_{CC} = MIN,$	V _{IH} = 2 V,	I _{OL} = 20 mA			0.5			0.5	V	
lj	V _{CC} = MAX,	Vj = 5.5 V				1			1	mA	
ЧН	V _{CC} = MAX,	Vj = 2.7 V				50			50	μA	
۱ _{IL}	V _{CC} = MAX,	V _I = 0.5V				-2			-2	mA	
IOS [§]	V _{CC} = MAX			-40		-100	-40		-100	mA	
ІССН	V _{CC} = MAX,	V _I = 0 V			10	16		10	16	mA	
ICCL	V _{CC} = MAX,	V _I = 4.5 V			20	36		20	36	mA	


[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	FROM	TO	TEST CONDITIONS		TO TEST CONDITIONS SN54S00 SUTPUT) TEST CONDITIONS					UNIT
	(INPUT)	(001901)			MIN	ТҮР	MAX			
^t PLH	A or B	A or B Y $R_1 = 280 \Omega$, $C_1 = 15 pF$	Ci = 15 pE		3	4.5	ns			
^t PHL	XOLD	I	Π <u></u> – 200 s2,	, OL = 10 pi		3	5	115		
^t PLH	A or B	v	Y $R_1 = 280 \Omega$, $C_1 = 50 pF$ 4.5		ns					
tPHL		0 <u>[</u> = 30 pi		5		115				

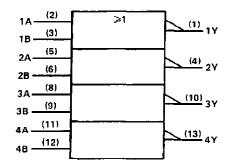
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL. E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω ; t_r and t_f \leq 7 ns for Series 54/74 devices and t_r and $t_f \le 2.5$ ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SDLS027

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

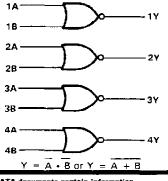
description


These devices contain four independent 2-input-NOR gates.

The SN5402, SN54LS02, and SN54S02 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7402, SN74LS02, and SN74S02 are characterized for operation from 0 °C to 70 °C.

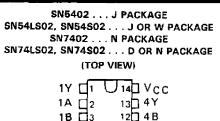
FUNCTION TABLE	(each	gate)	
----------------	-------	-------	--

INP	UTS	OUTPUT
A	в	Y
н	x	L
х	н	L
L	L	н


logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

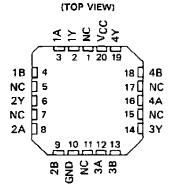
Pin numbers shown are for D, J, and N packages.


logic diagram (positive logic)

PRODUCTION DATA documents contain information current as of publication dats. Preducts conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include tasting of all parameters.

SN5402, SN54LS02, SN54S02, SN7402, SN74LS02, SN74S02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

DECEMBER 1983-REVISED MARCH 1988

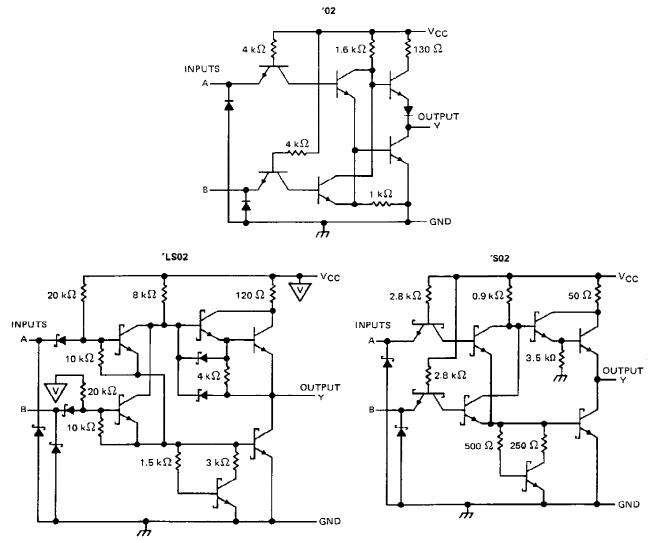


2Y 🗖	4	11 4A
2A 🗌	5	10 J 3 Y
2B 🖸	6	9 <mark>5</mark> 3 ₿
	7	8 🛛 3 A

SN5402 ... W PACKAGE (TOP VIEW)

1A 🗆	1	U	14	Ь	4Y
18 🗌	2		13	þ	4B
1Y 🗆	3		12	þ	4A
Vcc □	4	•	11	þ	GND
2Y 🗋	5		10	þ	3B
2A 🗌	6		9	þ	3A
2B 🗖	7		8	Þ	3Y

SN54LS02, SN54S02 ... FK PACKAGE



NC - No internal connection

SN5402, SN54LS02, SN54S02, SN7402, SN74LS02, SN74S02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
Input voltage: '02, 'SO2	
'LS02	7 V
Off-state output voltage	7V
Operating free-air temperature range: SN54'	55°C to 125°C
SN74'	
Storage temperature range	65°C to 150°C

NOTE 1. Voltage values are with respect to network ground terminal.

SN5402, SN7402 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

recommended operating conditions

	:	SN5402			SN7402]	
	MIN	NOM	MAX	MIN	NOM	мах	UNIT
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	ν
VIH High-level input voltage	2			2			v
VIL Low-level input voltage			0.8			0.8	v
IOH High-level output current			- 0.4			- 0.4	mΑ
IOL Low-level output current			16			16	mΑ
TA Operating free-air temperature	55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDI			SN5402 SN7402					
PARAMETER		TEST CONDI	TIONST	MIN	TYP‡	MAX	MIN	түр‡	MAX	ν ν μΑ μΑ
¥ικ	V _{CC} = MIN,	l₁ = − 12 mA				- 1.5			- 1.5	V
∨он	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = - 0.4 mA	2.4	3.4		2.4	3.4		V
V _{OL}	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
4	V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
łн	V _{CC} = MAX,	Vi = 2.4 V	- -			40			40	μA
hι	V _{CC} = MAX,	V ₁ = 0.4 V				- 1. 6			— 1. 6	mА
los∮	VCC = MAX			- 20		- 55	- 18		- 55	mA
^I ССН	V _{CC} = MAX,	V ₁ = 0 V			8	16		8	16	mΑ
ICCL	V _{CC} = MAX,	See Note 2			14	27		14	27	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

\$ Not more than one output should be shorted at a time.

NOTE 2: One input at 4.5 V, ell others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	то (о υт рит)	TEST CONDITIONS	MIN	түр	МАХ	UNIT
tPLH		N			12	12 22 8 15	ns
^t PHL	A or B	Ŷ	R _L = 400 Ω, C _L = 15 pF		8		ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS02, SN74LS02 QUADRUPLE 2-INPUT POSITIVE NOR GATES

recommended operating conditions

			SN54LS	:02	SN74LS02			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			v
۷i۲	Low-level input voltage			0.7			0.8	V
юн	High-level output current			- 0.4			- 0.4	mΑ
10L	Low-level output current			4			8	mΑ
Тд	Operating free-air temporature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		ST CONDITI			SN54L5	502		SN74L8	602	
PARAMETER	153	STCONDITI	UNSI	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
۷ıĸ	V _{CC} = MIN, I ₁ =	- 18 mA				- 1.5			- 1.5	v
√он	V _{CC} = MIN, V _{IL}	= MAX,	[†] OH = - 0.4 mA	2.5	3.4		2.7	3.4		v
	V _{CC} = MIN, V _I	⊣=2V,	l _{OL} = 4 mA		0.25	0.4		0.25	0.4	
VOL	V _{CC} = MIN, V _{IF}	⊣=2V,	IOL = 8 mA					0.35	0.5	ľ
4	V _{CC} = MAX, V _I -	= 7 V				0.1			0.1	mΑ
ίн	V _{CC} = MAX, V ₁	= 2.7 V	······································			20			20	μA
μL	VCC = MAX, VI	= 0.4 V				- 0.4			- 0.4	mΑ
los§	V _{CC} - MAX		· ····	- 20		- 100	- 20		- 100	mΑ
Іссн	V _{CC} = MAX, VI	= 0 V	•		1.6	3.2		1.6	3.2	mΑ
ICCL	VCC = MAX, See	Note 2			2.8	5.4		2.8	5.4	mА

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \pm All typical values are at V_C = 5 V, T_A = 25^oC § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, VCC = 5 V, TA = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	түр	МАХ	UNIT	
₹₽LH	A or B	,	P 3 kg	C. = 15 pE		10	15	ńs
^t PHL	2010	•	RL = 2 kΩ,	CL = 15 pF		10	15	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54S02, SN74S02 QUADRUPLE 2-INPUT POSITIVE-NOR GATES

recommended operating conditions

			SN54S02			SN74S02			
		MIN	MIN NOM MAX MIN NOM		MAX	UNIT			
V _{CC} Supply volta	8ge	4.5	5	5.5	4.75	5	5.25	v	
V _{IH} High-level in	nput voltage	2			2			v	
VIL Low-level in	iput voltage			0.8			0.8	v	
IOH High-level o	utput current			- 1			- 1	mΑ	
IOL Low-level of	utput current			20			20	mA	
T _A Operating fr	ree-air temperature	55		125	0		70	°c	

*

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETER	TEST CONDITIONS 1	SN54S02	SN74S02	
PARAMETER		MIN TYP‡ MAX	MIN TYP: MAX	UNIT
۷ _{IK}	V _{CC} = MIN, I _I = -18 mA	-1.2	-1.2	v
∨он	V _{CC} = MIN, V _{1L} = 0.8 V, i _{OH} = -1 mA	2.5 3.4	2.7 3.4	v
VOL	V _{CC} = MIN, V _{IH} = 2 V, I _{OL} = 20 mA	0.5	0.5	v
4	V _{CC} = MAX, V _I = 5.5 V	1	1	mA
—————————————————————————————————————	V _{CC} = MAX, V ₁ = 2.7 V	50	50	μA
ΙL	V _{CC} = MAX, V ₁ = 0.5 V	-2	-2	mΑ
∣ _{OS} §	V _{CC} = MAX	-40 -100	40100	mA
ссн	$V_{CC} = MAX, V_I = 0 V$	17 29	17 29	mA
ICCL	V _{CC} = MAX, See Note 2	26 45	26 45	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

NOTE 2: One input at 4.5 V, all others at GND,

switching characteristics, V_{CC} = 5 V, T_A = 25° C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
^t PLH			$R_1 = 280 \Omega$, $C_1 = 15 \rho F$	3.5	5,5	ns
tPHL		~	R _L = 280 Ω, C _L = 15 ρF	3.5	5,5	ns
^t ₽LH	A or B	Y		5		ns
^t PHL			$R_{L} = 280 \ \Omega, \qquad C_{L} = 50 \ \rho F$	5		ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
JM38510/00401BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00401BCA	Samples
JM38510/00401BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00401BDA	Samples
JM38510/00401BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00401BDA	Samples
JM38510/07301BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07301BCA	Samples
JM38510/07301BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07301BCA	Samples
JM38510/07301BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07301BDA	Samples
JM38510/07301BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07301BDA	Samples
JM38510/30301B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30301B2A	Samples
JM38510/30301B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30301B2A	Samples
JM38510/30301BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301BCA	Samples
JM38510/30301BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301BCA	Samples
JM38510/30301BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301BDA	Samples
JM38510/30301BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301BDA	Samples
JM38510/30301SCA	ACTIVE	CDIP	J	14	25	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301SCA	Samples
JM38510/30301SCA	ACTIVE	CDIP	J	14	25	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301SCA	Samples
JM38510/30301SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301SDA	Samples
JM38510/30301SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301SDA	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Sample
M38510/00401BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00401BCA	Sample
M38510/00401BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00401BCA	Sample
M38510/00401BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00401BDA	Sample
M38510/00401BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00401BDA	Sample
M38510/07301BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07301BCA	Sample
M38510/07301BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07301BCA	Sample
M38510/07301BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07301BDA	Sample
M38510/07301BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07301BDA	Sample
M38510/30301B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30301B2A	Sample
M38510/30301B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30301B2A	Sample
M38510/30301BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301BCA	Sample
M38510/30301BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301BCA	Sample
M38510/30301BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301BDA	Sample
M38510/30301BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301BDA	Sample
M38510/30301SCA	ACTIVE	CDIP	J	14	25	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301SCA	Sample
M38510/30301SCA	ACTIVE	CDIP	J	14	25	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301SCA	Sample
M38510/30301SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301SDA	Sample
M38510/30301SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30301SDA	Sample

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
SN5402J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN5402J	Samples
SN5402J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN5402J	Samples
SN54LS02J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS02J	Samples
SN54LS02J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS02J	Samples
SN54S02J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S02J	Samples
SN54S02J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S02J	Samples
SN7402N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN7402N	Samples
SN7402N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN7402N	Samples
SN7402N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	0 to 70		
SN7402N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	0 to 70		
SN7402NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN7402N	Samples
SN7402NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN7402N	Samples
SN74LS02D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Samples
SN74LS02D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Samples
SN74LS02DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Samples
SN74LS02DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Samples
SN74LS02DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Samples
SN74LS02DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Samples
SN74LS02DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Samples
SN74LS02DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings (4)	Sample
SN74LS02DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Sampl
SN74LS02DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Sampl
SN74LS02DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Sampl
SN74LS02DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS02	Sampl
SN74LS02J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	0 to 70		
SN74LS02J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	0 to 70		
SN74LS02N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS02N	Sampl
SN74LS02N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS02N	Sampl
SN74LS02N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	0 to 70		
SN74LS02N3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	0 to 70		
SN74LS02NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS02N	Samp
SN74LS02NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS02N	Samp
SN74LS02NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS02	Samp
SN74LS02NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS02	Samp
SN74LS02NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS02	Samp
SN74LS02NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS02	Samp
SN74S02D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S02	Samp
SN74S02D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S02	Samp
SN74S02DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S02	Samp
SN74S02DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S02	Samp

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Top-Side Markings (4)	Sample
SN74S02DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S02	Sampl
SN74S02DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S02	Sampl
SN74S02DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	0 to 70		
SN74S02DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	0 to 70		
SN74S02N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S02N	Sampl
SN74S02N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S02N	Sampl
SN74S02N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	0 to 70		
SN74S02N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	0 to 70		
SN74S02NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S02N	Samp
SN74S02NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S02N	Samp
SNJ5402J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ5402J	Samp
SNJ5402J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ5402J	Samp
SNJ5402W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ5402W	Samp
SNJ5402W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ5402W	Samp
SNJ54LS02FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 02FK	Samp
SNJ54LS02FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54LS 02FK	Samp
SNJ54LS02J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS02J	Samp
SNJ54LS02J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS02J	Samp
SNJ54LS02W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS02W	Samp
SNJ54LS02W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54LS02W	Samp
SNJ54S02FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54S 02FK	Samp

11-Apr-2013

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
SNJ54S02FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54S 02FK	Samples
SNJ54S02J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S02J	Samples
SNJ54S02J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S02J	Samples
SNJ54S02W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S02W	Samples
SNJ54S02W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S02W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

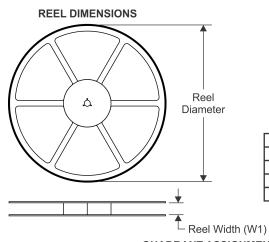
www.ti.com

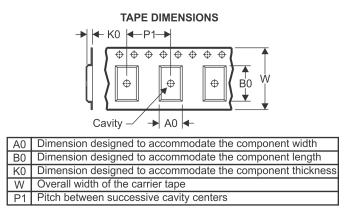
11-Apr-2013

OTHER QUALIFIED VERSIONS OF SN5402, SN54LS02, SN54LS02-SP, SN54S02, SN7402, SN74LS02, SN74S02 :

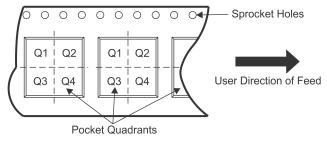
- Catalog: SN7402, SN74LS02, SN54LS02, SN74S02
- Military: SN5402, SN54LS02, SN54S02
- Space: SN54LS02-SP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

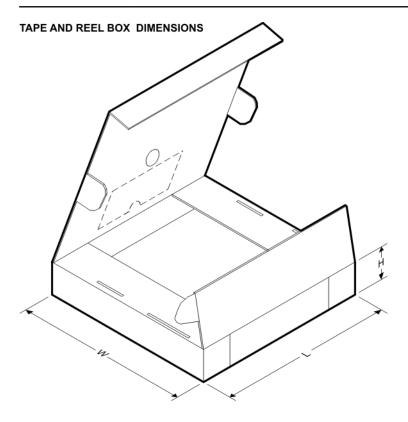

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS02DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

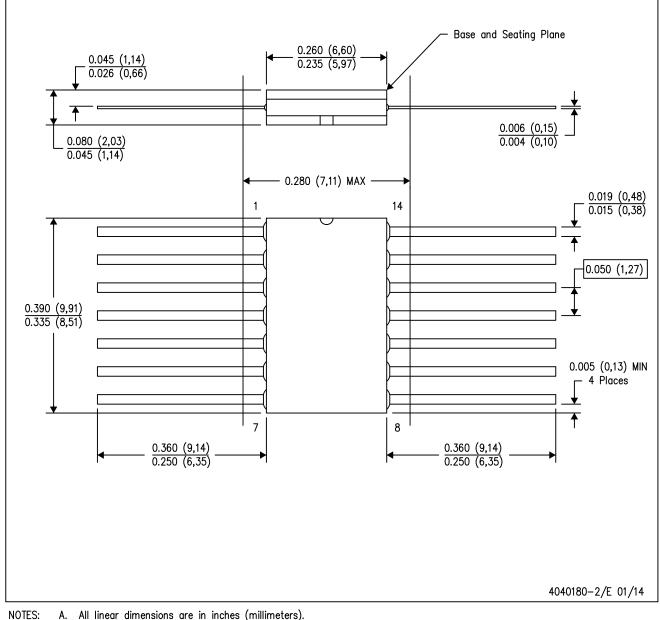
8-Apr-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS02DR	SOIC	D	14	2500	367.0	367.0	38.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

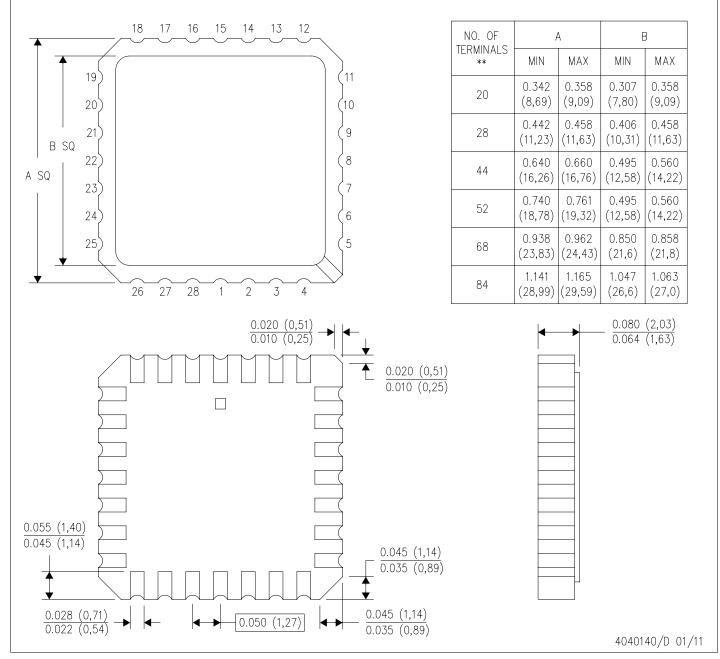


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

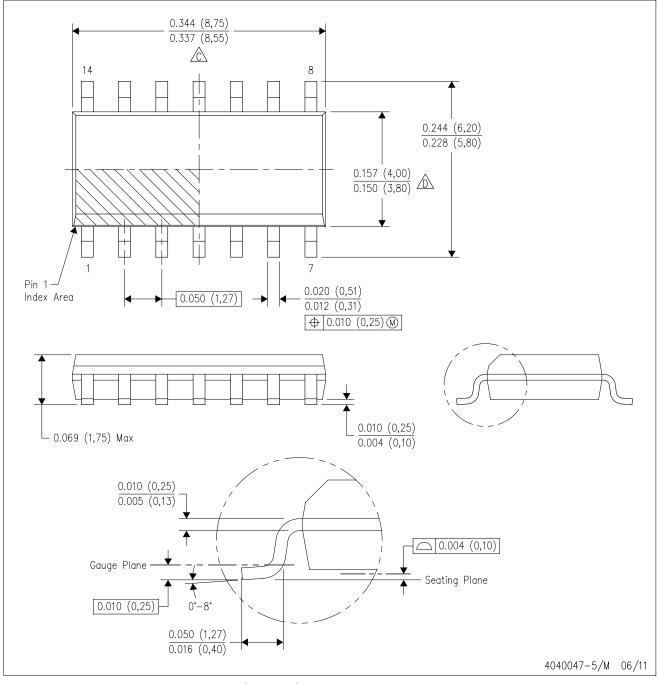
B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

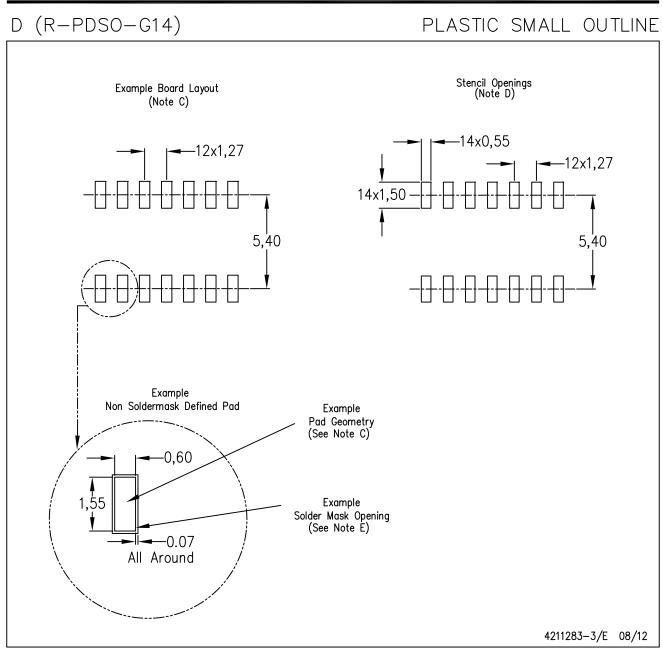
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

SN5404, SN54LS04, SN54S04,
SN7404, SN74LS04, SN74S04
HEX INVERTERS

SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

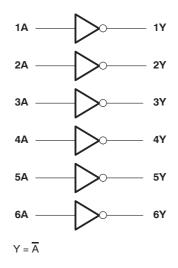
SDLS029C – DECEMBER 1983 – REVISED JANUARY 2
SN5404 J PACKAGE SN54LS04, SN54S04 J OR W PACKAGE SN7404, SN74S04 D, N, OR NS PACKAGE SN74LS04 D, DB, N, OR NS PACKAGE (TOP VIEW)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SN5404 W PACKAGE (TOP VIEW)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
SN54LS04, SN54S04 FK PACKAGE (TOP VIEW)
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2004, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

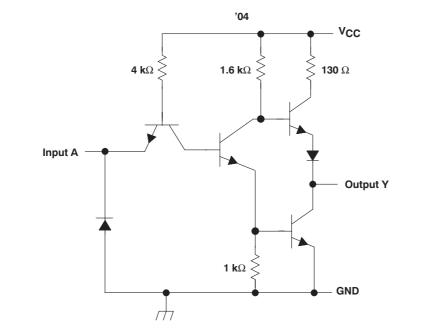
SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

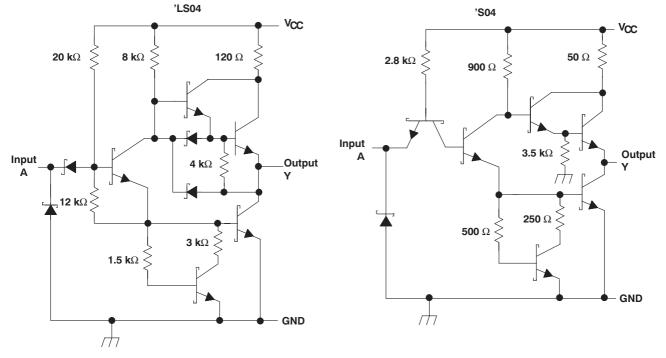

ORDERING INFORMATION								
TA	PAC	CKAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING				
		Tube	SN7404N	SN7404N				
	PDIP – N	Tube	SN74LS04N	SN74LS04N				
		Tube	SN74S04N	SN74S04N				
		Tube	SN7404D					
		Tape and reel	SN7404DR	7404				
0°C to 70°C		Tube	Tube SN74LS04D					
0°C to 70°C	SOIC – D	Tape and reel	SN74LS04DR	LS04				
0°С ю 70°С		Tube	SN74S04D					
		Tape and reel	SN74S04DR	S04				
		Tape and reel	SN7404NSR	SN7404				
	SOP – NS	Tape and reel	SN74LS04NSR	74LS04				
		Tape and reel	SN74S04NSR	74S04				
	SSOP – DB	Tape and reel	SN74LS04DBR	LS04				
		Tube	SN5404J	SN5404J				
		Tube	SNJ5404J	SNJ5404J				
		Tube	SN54LS04J	SN54LS04J				
	CDIP – J	Tube	SN54S04J	SN54S04J				
		Tube	SNJ54LS04J	SNJ54LS04J				
–55°C to 125°C		Tube	SNJ54S04J	SNJ54S04J				
		Tube	SNJ5404W	SNJ5404W				
-55 0 10 125 0	CFP – W	Tube	SNJ54LS04W	SNJ54LS04W				
		Tube	SNJ54S04W	SNJ54S04W				
		Tube	SNJ54LS04FK	SNJ54LS04FK				
	LCCC – FK	Tube	SNJ54S04FK	SNJ54S04FK				

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

_	FUNCTION TABLE (each inverter)							
	INPUT A	OUTPUT Y						
	Н	L						
	L	Н						

logic diagram (positive logic)





SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS

SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1) Input voltage, V _I : '04, 'S04		
Package thermal impedance, θ_{JA} (see Note 2)	: D package	86°C/W
	DB package	
	N package	80°C/W
	NS package	
Storage temperature range, T _{stg}		65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

		SN5404			SN7404			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			16			16	mA
ТА	Operating free-air temperature	- 55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED	TEAT CONDITIONAL				SN5404		SN7404			
PARAMETER		TEST CONDITIONS [‡]			ΤΥΡ [§]	MAX	MIN	TYP§	MAX	UNIT
VIK	V _{CC} = MIN,	lj = –12 mA				-1.5			-1.5	V
V _{OH}	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = -0.4 mA	2.4	3.4		2.4	3.4		V
V _{OL}	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
lj	V _{CC} = MAX,	VI = 5.5 V				1			1	mA
lιΗ	V _{CC} = MAX,	VI = 2.4 V				40			40	μΑ
١	V _{CC} = MAX,	VI = 0.4 V				-1.6			-1.6	mA
los¶	V _{CC} = MAX			-20		-55	-18		-55	mA
ICCH	V _{CC} = MAX,	V _I = 0 V			6	12		6	12	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			18	33		18	33	mA

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[¶] Not more than one output should be shorted at a time.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST C	TEST CONDITIONS		SN5404 SN7404		UNIT	
	(INFOT)	(001201)			MIN	TYP	MAX		
^t PLH	٨	V	D: 400.0	0. 15		12	22		
^t PHL	A	ř	R _L = 400 Ω,	C _L = 15 pF		8	15	ns	

recommended operating conditions (see Note 3)

		SN54LS04			S	4		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	-55		125	0		70	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DADAMETED		TEST CONDITIONS [†]		S	N54LS0	4	SN74LS04			
PARAMETER		TEST CONDITIO	JNST	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
VIK	V _{CC} = MIN,	lı = – 18 mA				-1.5			- 1.5	V
VOH	$V_{CC} = MIN,$	$V_{IL} = MAX,$	I _{OH} = -0.4 mA	2.5	3.4		2.7	3.4		V
Ve	$V_{CC} = MIN,$ $V_{IH} = 2 V$	V 0.V	I _{OL} = 4 mA		0.25	0.4			0.4	V
VOL		vIH = 2 v	IOL = 8 mA					0.25	0.5	v
lj	$V_{CC} = MAX,$	Vj = 7 V				0.1			0.1	mA
ЧН	$V_{CC} = MAX,$	VI = 2.7 V				20			20	μΑ
ΙL	V _{CC} = MAX,	VI = 0.4 V				-0.4			-0.4	mA
IOS§	V _{CC} = MAX			-20		-100	-20		-100	mA
ICCH	V _{CC} = MAX,	V _I = 0 V			1.2	2.4		1.2	2.4	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			3.6	6.6		3.6	6.6	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.

§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, V_CC = 5 V, T_A = 25°C (see Figure 2)

	PARAMETER	FROM	FROM TO TEST CONDI		TEST CONDITIONS		N54LS04 N74LS04		UNIT	
		(INFOT)	(001701)			MIN	TYP	MAX		
ſ	^t PLH	٨	V		0. 15		9	15		
	^t PHL	A	ř	R _L = 2 kΩ,	C _L = 15 pF		10	15	ns	

SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

recommended operating conditions (see Note 3)

		SN54S04			SN74S04			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-1			-1	mA
IOL	Low-level output current			20			20	mA
ТА	Operating free-air temperature	-55		125	0		70	°C

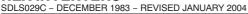
NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

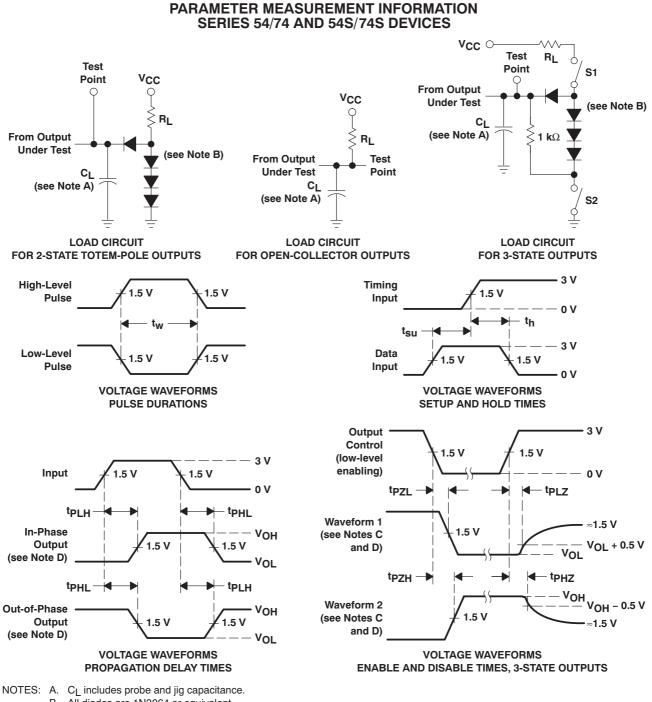
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS [†]			SN54S04		SN74S04			
PARAMETER		TEST CONDITIO	JNSI	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	lj = –18 mA				-1.2			-1.2	V
VOH	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = –1 mA	2.5	3.4		2.7	3.4		V
V _{OL}	$V_{CC} = MIN,$	V _{IH} = 2 V,	I _{OL} = 20 mA			0.5			0.5	V
lj	V _{CC} = MAX,	VI = 5.5 V				1			1	mA
IН	V _{CC} = MAX,	VI = 2.7 V				50			50	μΑ
ΙL	V _{CC} = MAX,	V _I = 0.5 V				-2			-2	mA
los§	$V_{CC} = MAX$			-40		-100	-40		-100	mA
ICCH	V _{CC} = MAX,	V _I = 0 V			15	24		15	24	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			30	54		30	54	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25°C.


§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.


switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST	CONDITIONS	-	N54S04 N74S04		UNIT
		(001201)		MIN	TYP	MAX		
^t PLH		V	R _I = 280 Ω,	C _I = 15 pF		3	4.5	
^t PHL	A	T	nL = 200 32,			3	5	ns
^t PLH		V	B. 280.0	C: 50 pE		4.5		
^t PHL	A	ſ	Y $R_L = 280 \Omega$, $C_L = 50 pF$ 5			ns		

SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 HEX INVERTERS

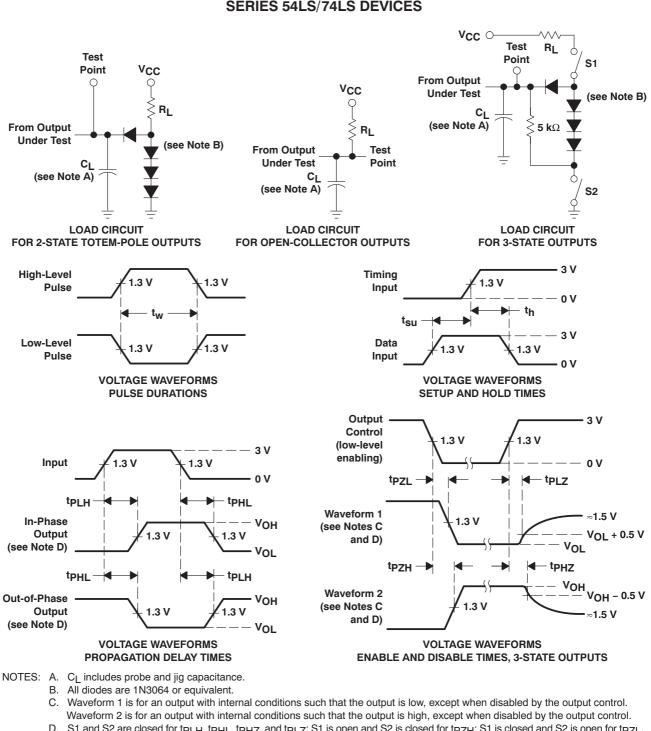

- B. All diodes are 1N3064 or equivalent.
 - C. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL. E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z₀ \approx 50 Ω ; t_r and t_f \leq 7 ns for Series
 - 54/74 devices and t_r and t_f ≤ 2.5 ns for Series 54S/74S devices.
 - F. The outputs are measured one at a time, with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SN5404, SN54LS04, SN54S04, SN7404, SN74LS04, SN74S04 **HEX INVERTERS**

SDLS029C - DECEMBER 1983 - REVISED JANUARY 2004

PARAMETER MEASUREMENT INFORMATION SERIES 54LS/74LS DEVICES

- S1 and S2 are closed for tPLH, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL. D.
- E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
- F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω , t_r \leq 1.5 ns, t_f \leq 2.6 ns.
- G. The outputs are measured one at a time, with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

PACKAGE OPTION ADDENDUM

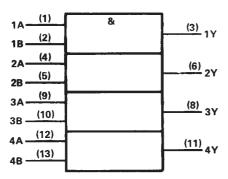
www.ti.com

15-Oct-2009

PACKAGING INFORMATION

JM3851000105BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM3851000105BCA ACTIVE COIP J 14 1 TBD A42 N / A for Pkg Type JM3851000003BCA ACTIVE COIP J 14 1 TBD POST-PLATE N / A for Pkg Type JM3851030003BCA ACTIVE COIP J 14 1 TBD A42 N / A for Pkg Type JM3851030003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM3851030003SCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM3851040003SCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54LS04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE SOIC D 14 1 TBD	Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
JM38510/07003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM38510/30003BCA ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type JM38510/30003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM38510/30003SCA ACTIVE CPP W 14 1 TBD A42 N / A for Pkg Type JM38510/30003SCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404DE ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb(P) SN7404DR4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIP	JM38510/00105BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
JM38510/30003B2A ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type JM38510/30003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM38510/30003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM38510/30003SCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM38510/30003SCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU <td>JM38510/00105BDA</td> <td>ACTIVE</td> <td>CFP</td> <td>W</td> <td>14</td> <td>1</td> <td>TBD</td> <td>A42</td> <td>N / A for Pkg Type</td>	JM38510/00105BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
JM38510/30003BCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM38510/30003BDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type JM38510/30003SDA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN5404D ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-	JM38510/07003BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
JM38510/30003BDA ACTIVE CEP W 14 1 TBD A42 N / A for Pkg Type JM38510/30003SCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM38510/30003SDA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54LS0AJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54LS0AJ ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE SOIC D 14 50 Green (RHS & CU NIPDAU Level-1-260C-UNLIM SN7404DE4 ACTIVE SOIC D 14 50 Green (RHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR4 ACTIVE SOIC D 14 250 Green (RHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR64 ACTIVE SOIC D 14 2500 Green (RHS & CU NIPDAU Level-1-	JM38510/30003B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
JM38510/30003SCA ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type JM38510/30003SDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54504J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR64 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU	JM38510/30003BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
JM38510/30003SDA ACTIVE CFP W 14 1 TBD A42 N / A for Pkg Type SN54US04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54US04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54US04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/B) SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR4 ACTIVE SOIC D 14 250 Ph-Free CU NIPDAU	JM38510/30003BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SN5404J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54LS04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54S04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR64 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404NSR ACTIVE SOIC D 14 250 Green (RoHS & CU	JM38510/30003SCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SN54LS04.J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN54S04.J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404NR54 ACTIVE SOIC D 14 250 Pb-Free CU NIPDAU Level-1-260	JM38510/30003SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SN54S04J ACTIVE CDIP J 14 1 TBD A42 N / A for Pkg Type SN7404D ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DG4 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR64 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR64 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404NSR ACTIVE SOIC D 14 250	SN5404J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SN7404D ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DE4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DG4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR64 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404DR64 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404NS OBSOLETE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN7404NSR ACTIVE SO NS 14 <td>SN54LS04J</td> <td>ACTIVE</td> <td>CDIP</td> <td>J</td> <td>14</td> <td>1</td> <td>TBD</td> <td>A42</td> <td>N / A for Pkg Type</td>	SN54LS04J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
NT404DE4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DG4 ACTIVE SOIC D 14 50 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR64 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404DR64 ACTIVE SOIC D 14 250 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM SN7404N ACTIVE SOIC D 14 25 Pb-Free CU NIPDAU N / A for Pkg Type SN7404N3 OBSOLETE PDIP N 14 25 Pb-Free CU NIPDAU N / A for Pkg Type SN7404NSR ACTIVE SO NS 14 2000 Green (RoHS & CU NIPDAU <td< td=""><td>SN54S04J</td><td>ACTIVE</td><td>CDIP</td><td>J</td><td>14</td><td>1</td><td>TBD</td><td>A42</td><td>N / A for Pkg Type</td></td<>	SN54S04J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SN7404DG4ACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404DRACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404DRE4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404DRG4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404DRG4ACTIVEPDIPN14250Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404N3OBSOLETEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type (RoHS)SN7404N84ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg Type (RoHS)SN7404NSRACTIVESONS142000Green (RoHS & on Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404NSRE4ACTIVESONS142000Green (RoHS & on Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404NSRG4ACTIVESOICD1450Green (RoHS & on Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DE4ACTIVESOICD1450Green (RoHS & on Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DR4ACTIVESOICD1450Green (RoHS & on Sb/Br)CU NIPDAULevel-1-26	SN7404D	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
N7404DRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404DRE4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404DRG4ACTIVESOICD142500Green (RoHS & creen (RoHS & CU NIPDAULevel-1-260C-UNLIMSN7404DRG4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAULevel-1-260C-UNLIMSN7404N3OBSOLETEPDIPN1425Pb-Free (RoHS)Call TICall TISN7404N3OBSOLETEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeSN7404N8RACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAULevel-1-260C-UNLIMSN7404NSRACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DAACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DF4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOIC<	SN7404DE4	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
SN7404DRE4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Bt)SN7404DRG4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Bt)SN7404NACTIVEPDIPN1425PD-Free (RoHS & CU NIPDAUN / A for Pkg Type (RoHS & CU NIPDAUSN7404N3OBSOLETEPDIPN1425Pb-Free (RoHS & CU NIPDAUN / A for Pkg Type (RoHS & CU NIPDAUSN7404NSRACTIVEPDIPN1425Pb-Free (RoHS & CU NIPDAUN / A for Pkg Type (RoHS & CU NIPDAUSN7404NSRACTIVESONS142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404NSRE4ACTIVESONS142000Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404NSRG4ACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DE4ACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DE4ACTIVESOICD1450Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DR4ACTIVESOICD1450Green (ROHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DR4ACTIVESOICD1450Green (ROHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DR4ACTIVESOICD1450Green (ROHS & CU NIPDAU<	SN7404DG4	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
SN7404DRG4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404NACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeSN7404N3OBSOLETEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeSN7404NE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeSN7404NSRACTIVESONS142000Green (RoHS & (RoHS)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN7404NSRG4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DE4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DRACTIVESOICD14500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DR4ACTIVESOICD142500Green (RoHS & no Sb/	SN7404DR	ACTIVE	SOIC	D	14	2500	`	CU NIPDAU	Level-1-260C-UNLIM
SN7404NACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeSN7404N3OBSOLETEPDIPN14TBDCall TICall TICall TISN7404NE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeSN7404NSRACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DE4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR44ACTIVESOICD142500Green (ROHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR44ACTIVESOICD142500Green (ROHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR44ACTIVESOI	SN7404DRE4	ACTIVE	SOIC	D	14	2500	`	CU NIPDAU	Level-1-260C-UNLIM
SN7404N3OBSOLETEPDIPN14TBDCall TICall TISN7404NE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeSN7404NSRACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRG4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR64ACTIVESOIC <td>SN7404DRG4</td> <td>ACTIVE</td> <td>SOIC</td> <td>D</td> <td>14</td> <td>2500</td> <td></td> <td>CU NIPDAU</td> <td>Level-1-260C-UNLIM</td>	SN7404DRG4	ACTIVE	SOIC	D	14	2500		CU NIPDAU	Level-1-260C-UNLIM
SN7404NE4ACTIVEPDIPN1425Pb-Free (RoHS)CU NIPDAUN / A for Pkg TypeSN7404NSRACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRG4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRG4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DE4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRE4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR64ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR64ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM	SN7404N	ACTIVE	PDIP	Ν	14	25		CU NIPDAU	N / A for Pkg Type
Kinetic Sine and Sine a	SN7404N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN7404NSRE4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN7404NSRG4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DE4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DG4ACTIVESOICD1450Green (RoHS & cu NIPDAULevel-1-260C-UNLIMSN74LS04DRACTIVESOICD1450Green (RoHS & cu NIPDAULevel-1-260C-UNLIMSN74LS04DRACTIVESOICD142500Green (RoHS & cu NIPDAULevel-1-260C-UNLIMSN74LS04DRE4ACTIVESOICD142500Green (RoHS & cu NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & cu NIPDAULevel-1-260C-UNLIMSN74LS04DR64ACTIVESOICD142500Green (RoHS & cu NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & cu NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & cu NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & cu NIPDAULevel-1-260C-UNLIM	SN7404NE4	ACTIVE	PDIP	Ν	14	25		CU NIPDAU	N / A for Pkg Type
SN7404NSRG4ACTIVESONS142000Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIMSN74LS04DACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIMSN74LS04DE4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIMSN74LS04DG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIMSN74LS04DRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIMSN74LS04DRE4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM Level-1-260C-UNLIM no Sb/Br)SN74LS04DRE4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)SN74LS04DRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM no Sb/Br)	SN7404NSR	ACTIVE	SO	NS	14	2000		CU NIPDAU	Level-1-260C-UNLIM
SN74LS04DACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DE4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DR4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRE4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM	SN7404NSRE4	ACTIVE	SO	NS	14	2000	`	CU NIPDAU	Level-1-260C-UNLIM
SN74LS04DE4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DG4ACTIVESOICD1450Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRE4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIMSN74LS04DRE4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & CU NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & no Sb/Br)CU NIPDAULevel-1-260C-UNLIM	SN7404NSRG4	ACTIVE	SO	NS	14	2000	`	CU NIPDAU	Level-1-260C-UNLIM
no Sb/Br)SN74LS04DG4ACTIVESOICD1450Green (RoHS & Do Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRACTIVESOICD142500Green (RoHS & Do Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRE4ACTIVESOICD142500Green (RoHS & Do Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & Do Sb/Br)CU NIPDAULevel-1-260C-UNLIMSN74LS04DRG4ACTIVESOICD142500Green (RoHS & Do Sb/Br)CU NIPDAULevel-1-260C-UNLIM	SN74LS04D	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
SN74LS04DR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN74LS04DRE4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN74LS04DRE4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN74LS04DRG4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br)	SN74LS04DE4	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
no Sb/Br) SN74LS04DRE4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN74LS04DRG4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br)	SN74LS04DG4	ACTIVE	SOIC	D	14	50		CU NIPDAU	Level-1-260C-UNLIM
SN74LS04DRE4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN74LS04DRG4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br) SN74LS04DRG4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br)	SN74LS04DR	ACTIVE	SOIC	D	14	2500	`	CU NIPDAU	Level-1-260C-UNLIM
SN74LS04DRG4 ACTIVE SOIC D 14 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM no Sb/Br)	SN74LS04DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM
· · ·	SN74LS04DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM
	SN74LS04J	OBSOLETE	CDIP	J	14		•	Call TI	Call TI

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

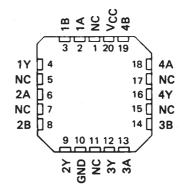

description

These devices contain four independent 2-input AND gates.

The SN5408, SN54LS08, and SN54S08 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7408, SN74LS08 and SN74S08 are characterized for operation from 0° to 70 °C.

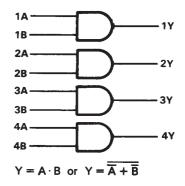
INP	UTS	OUTPUT
A	В	Y
н	н	н
L	х	L
X	L	L

logic symbol[†]


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

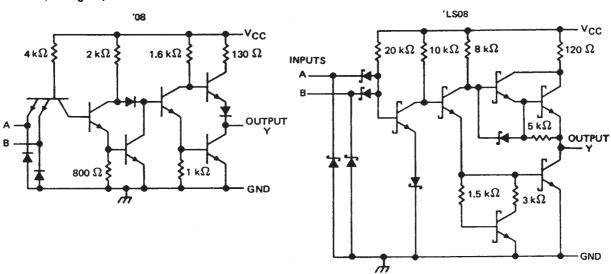
SN5408, SN54LS08, SN54S08 . . . J OR W PACKAGE SN7408 . . . J OR N PACKAGE SN74LS08, SN74S08 . . . D, J OR N PACKAGE (TOP VJEW)

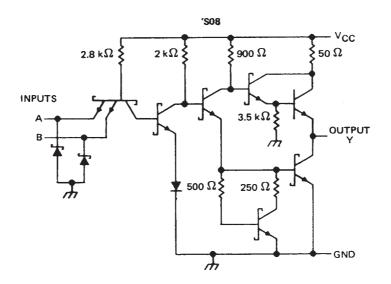

1A [1	14 VCC
1B [2	13 4B
1Y [3	12 4A
2A [4	11 4Y
2B [5	10 3B
2Y [6	9 3A
2Y []	6	9] 3A
GND []	7	8] 3Y

SN54LS08, SN54S08 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

logic diagram (positive logic)




PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1988, Texas Instruments Incorporated

schematics (each gate)

Resistor values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage: '08, 'S08	5.5 V
'LS08	
Operating free-air temperature range: SN54'	
SN74'	
Storage temperature range	65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN5408			SN7408			
	MIN	NOM	MAX	MIN	NOM	мах	UNIT	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	v	
VIH High-level input voltage	2			2			v	
VIL Low-level input voltage			0.8			0.8	v	
IOH High-level output current			- 0.8			- 0.8	mA	
IOL Low-level output current			16			16	mA	
T _A Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SN540	8		SN740	8	UNIT
PARAMETER	TEST CONDITIONS T	MIN	TYP‡	MAX	MIN	түр‡	MAX	UNIT
VIK	V _{CC} = MIN, I _I = - 12 mA			- 1.5			- 1.5	V
Vон	$V_{CC} = MIN, V_{1H} = 2V, I_{OH} = -0.8 \text{ mA}$	2.4	3.4		2.4	3.4		.V.
VOL	V _{CC} = MIN, V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
Lį	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
Чн	V _{CC} = MAX, V _I = 2.4 V			40			40	. µA
կլ	V _{CC} = MAX, V ₁ = 0.4 V			- 1.6			- 1.6	mA
IOS§	V _{CC} = MAX	- 20		- 55	- 18		- 55	mA
Іссн	V _{CC} = MAX, V ₁ = 4.5 V		11	21		11	21	mA
ICCL	V _{CC} = MAX, V ₁ = 0 V		20	33		20	33	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25° C. § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
^t PLH				_	17.5	27	ns
^t PHL	A or B	Y	$R_{L} = 400 \Omega$, $C_{L} = 15 pF$		12	19	ns

recommended operating conditions

			SN54LS08			SN74LS08			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	v	
юн	High-level output current			- 0.4			- 0.4	mA	
IOL	Low-level output current			4			8	mA	
TA	Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN64LS	08		SN74LS	80	UNIT	
PARAMETER		TEST CONDIT	TIONS I	MIN	TYP‡	MAX	MIN	MIN TYP‡ MAX		ONT	
VIK	V _{CC} = MIN,	l _l = – 18 mA				- 1.5			- 1.5	V	
VOH	V _{CC} = MIN,	V _{IH} = 2 V,	^I OH = - 0.4 mA	2.5	3.4		2.7	3.4		v	
	V _{CC} = MIN,	VIL = MAX,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	v	
VOL	V _{CC} = MIN,	VIL = MAX,	IOL = 8 mA					0.35	0.5		
4	V _{CC} = MAX,	V ₁ = 7 V	· · · · · · · · · · · · · · · · · · ·			0.1			0.1	mA	
Чн	V _{CC} = MAX,	V _I = 2.7 V	······································			20			20	μA	
ΊL	V _{CC} = MAX,	V1 = 0.4 V				- 0.4			- 0.4	mA	
IOS §	V _{CC} = MAX			- 20		100	- 20		- 100	mA	
ССН	V _{CC} = MAX,	V ₁ = 4.5 V			2.4	4.8		2.4	4.8	mA	
ICCL	V _{CC} = MAX,	V1 = 0 V			4.4	8.8		4.4	8.8	mA	

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		түр	MAX	UNIT
^t PLH	A or B	×	$R_L = 2 k\Omega$, $C_I = 15 pF$		8	15	ns
^t PHL	AOFB	Ť	$R_L = 2 k\Omega$, $C_L = 15 pF$		10	20	ns

recommended operating conditions

			SN54S08			SN74S0	8	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			- 1			- 1	mA
IOL	Low-level output current			20			20	mA
TA	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN54S0	8		SN74S0	8	UNIT
PARAMETER		TEST CONDIT	FIONS T	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	l _l = –18 mA				-1.2			-1.2	v
VOH	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} = - 1 mA	2.5	3.4		2.7	3.4		v
VOL	V _{CC} = MIN,	V _{IL} = 0.8 V	I _{OL} = 20 mA			0.5			0.5	V
lį	V _{CC} = MAX,	VI ≈ 5.5 V	an a hayi i ana a daha da			1			1	mA
Чн	V _{CC} = MAX,	VI = 2.7 V	· · · · · · · · · · · · · · · · · · ·			50			50	μA
μL	V _{CC} = MAX,	V ₁ = 0.5 V				-2			2	mA
IOS §	V _{CC} = MAX			-40		-100	-40		100	mA
ІССН	V _{CC} = MAX,	V _I = 4.5 V			18	32		18	32	mA
ICCL	V _{CC} = MAX,	VI = 0 V			32	57		32	57	mA

1 For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

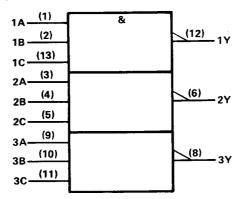
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
^t PLH			RL = 280 Ω, CL = 15 pF		4.5	7	ns
^t PHL	A	, v			5	7,5	ns
^t PLH	A or B	Ŷ	$R_1 = 280 \Omega_2$, $C_1 = 50 \rho F$		6		ns
^t PHL			R _L = 280 Ω, C _L = 50 pF		7,5		ns

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

SN5410, SN54LS10, SN54S10, SN7410, SN74LS10, SN74S10 TRIPLE 3-INPUT POSITIVE-NAND GATES SDLS035A – DECEMBER 1983 – REVISED APRIL 2003

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

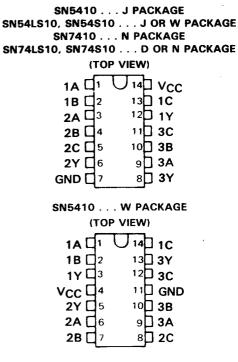

These devices contain three independent 3-input NAND gates.

The SN5410, SN54LS10, and SN54S10 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7410, SN74LS10, and SN74S10 are characterized for operation from 0 °C to 70 °C.

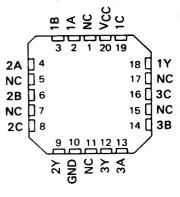
FUNCTION TABLE (each gate)

11	NPUT	s	OUTPUT
A	В	c	Y
н	н	н	L
L	х	x	н
x	L	x	н
x	х	L	н

logic symbol[†]

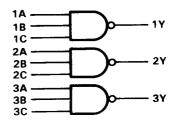


[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, J, and N packages.

positive logic

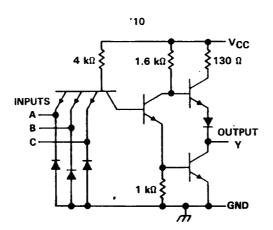
$$\mathbf{Y} = \overline{\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}} \text{ or } \mathbf{Y} = \overline{\mathbf{A}} + \overline{\mathbf{B}} + \overline{\mathbf{C}}$$

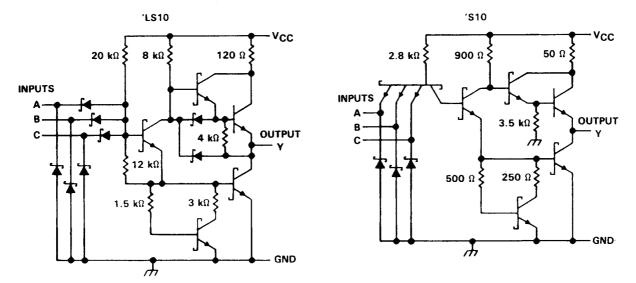


SN54LS10, SN54S10 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram (positive logic)


Copyright © 2003, Texas Instruments Incorporated


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN5410, SN54LS10, SN54S10, SN7410, SN74LS10, SN74S10 TRIPLE 3-INPUT POSITIVE-NAND GATES SDLS035A - DECEMBER 1983 - REVISED APRIL 2003

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
Input voltage: '10, 'S10		5.5 V
Operating free-air temperature range:	SN54'	– 55°C to 125°C
	SN74'	0°C to 70°C
Storage temperature range		-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

SN5410, SN7410, TRIPLE 3-INPUT POSITIVE-NAND GATES

SDLS035 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

			SN5410	1		SN7410)	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			- 0.4			- 0.4	mA
IOL	Low-level output current			16			. 16	mA
т _А	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDI			SN5410	0		SN741	0	
				MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	l _l = – 12 mA				- 1.5			- 1.5	v
V _{OH}	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = - 0.4 mA	2.4	3.4		2.4	3.4		v
VOL	V _{CC} = MIN,	V _{IH} ≠ 2 V,	1 _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
1	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
Чн	V _{CC} = MAX,	VI = 2.4 V				40			40	μA
11L	V _{CC} = MAX,	V ₁ = 0.4 V				- 1.6			- 1.6	mA
1OS§	V _{CC} = MAX		an a	- 20		- 55	- 18		- 55	mA
іссн	V _{CC} = MAX,	V1 = 0 V			3	6		3	6	mA
ICCL	V _{CC} = MAX,	V1 = 4.5 V			9	16.5		9	16.5	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

	FROM	то					
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	A, B or C	· · · · · · · · · · · · · · · · · · ·	B. = 100 0		11	22	ns
^t PHL	A, 0 0 0	r	R _L = 400 Ω, C _L = 15 pF		7	15	ns

SN54LS10, SN74LS10, TRIPLE 3-INPUT POSITIVE-NAND GATES

SDLS035 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

			SN54LS	510		SN74LS10			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Supply volta	ge	4.5	5	5.5	4.75	5	5.25	v	
VIH High-level in	out voltage	2			2			v	
VIL Low-level inp	but voltage			0.7			0.8	v	
IOH High-level ou	tput current			- 0.4		·	- 0.4	mA	
IOL Low-level ou	tput current			4			8	mA	
T _A Operating fre	e-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDIT	tions t		SN54LS	10		SN74LS	i10 -	
FARAMETER		IEST CONDIT		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	l _l = — 18 mA	· · ·			- 1.5			- 1.5	V
V _{OH}	V _{CC} = MIN,	VIL = MAX,	l _{OH} = 0.4 mA	2.5	3.4		2.7	3.4		v
Ve	V _{CC} = MIN,	V _{IH} ≈ 2 V,	1 _{OL} = 4 mA		0.25	0.4			0.4	
VOL	V _{CC} = MIN,	V _{1H} = 2 V,	IOL = 8 mA					0.25	0.5	v
i,	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ήн	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μΑ
կլ	V _{CC} = MAX,	V1 = 0.4 V				- 0.4			- 0.4	mA
los§	V _{CC} = MAX			- 20	·	- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	V _I = 0 V			0.6	1.2		0.6	1.2	mA
ICCF	V _{CC} = MAX,	V ₁ = 4.5 V			1.8	3.3		1.8	3.3	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	түр	МАХ	UNIT
tPLH	A, B or C	Y	$R_{L} = 2 k\Omega$,	Ci = 15 pF		9	15	ns
^t PHL			n 2 kst,	C[= 15 pr		10	15	ns

SN54S10, SN74S10, TRIPLE 3-INPUT POSITIVE-NAND GATES

SDLS035 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

			SN54S1	0		SN74S10		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			- 1			- 1	mA
IOL	Low-level output current			20			20	mA
TA	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	1	7507 00001			SN5451	0		SN74S	10 ,	UNIT
PARAMETER		TEST CONDIT	IONST	MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	V _{CC} = MIN,	l _l = –18 mA				-1.2			-1.2	v
V _{OH}	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = - 1 mA	2.5	3.4		2.7	3.4		V
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OL} = 20 mA			0.5			0.5	V
1	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
ЦΗ	V _{CC} = MAX,	V _I = 2.7 V				50			50	μA
¹ı∟	V _{CC} = MAX,	V _I = 0.5 V				-2			-2	mA
IOS §	V _{CC} = MAX			-40		-100	-40		-100	mA
ICCH	V _{CC} = MAX,	V ₁ = 0 V			7.5	12		7.5	12	mA
ICCL	V _{CC} = MAX,	V _I = 4.5 V			15	27		15	27	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

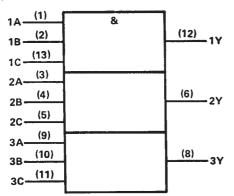
[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	MAX	UNIT
^t ₽LH			$R_{\rm I} = 280 \Omega,$ $C_{\rm I} = 15 \mathrm{pF}$		3	4.5	ns
^t PHL	A B	v	ημ-20032, CL-13 μr		3	5	ns
^t PLH	A, B or C	Y	R. = 290 0		4.5		ns
^t PHL			$R_{L} = 280 \Omega$, $C_{L} = 50 pF$		5		ns

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description


These devices contain three independent 3-input AND gates.

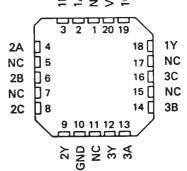
The SN54LS11 and SN54S11 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74LS11 and SN74S11 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

11	NPUT	s	OUTPUT
A	В	с	Y
н	н	н	н
L	Х	X	L
Х	L	X	L
х	Х	L	L

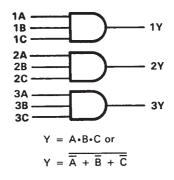
logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

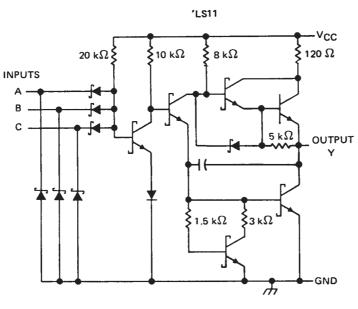

Pin numbers shown are for D, J, N, and W packages.

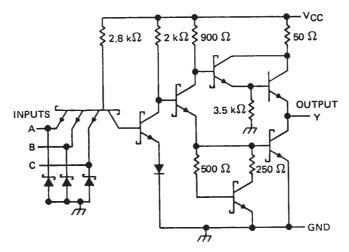
SN54LS11, SN74S11 ... J OR W PACKAGE SN74LS11, SN74S11 ... D OR N PACKAGE

	(TO	P VIEW)	
1A	Цı		Vcc
1B		13	1C
2A		12	1Y
2B	₫₄	11	3C
2C		10	3B
2Y	De	de 🛛	3A
GND	d ⁷	8	3Y
		the second se	


SN54LS11, SN54S11 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection


logic diagram (positive logic)


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

schematics (each gate)

'S11

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V
Input voltage: 'S11 5.5 V
'LS11
Operating free-air temperature range: SN54'
SN74'
Storage temperature range65 °C to 150 °C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		S	SN54LS11			SN74LS11			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Su	pply voltage	4.5	5	5.5	4.75	5	5.25	V	
V _{IH} Hig	gh-level input voltage	2			2			v	
V _{IL} Lo	w-level input voltage			0.7			0.8	V	
I _{OH} Hig	gh-level output current			- 0.4			- 0.4	mA	
IOL LO	w-level output current			4			8	mA	
T _A Op	perating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN54LS	11	S			
PARAMETER	TEST CONDITIONS †			MIN	TYP‡	MAX	MIN	TYP ‡	MAX	UNTI
VIK	V _{CC} = MIN,	lı = 18 mA				- 1.5			- 1.5	v
V _{OH}	V _{CC} = MIN,	V _{IH} = 2 以	I _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		V
N.e.	V _{CC} = MIN,	VIL = MAX,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	v
VOL	V _{CC} = MIN,	VIL = MAX,	I _{OL} = 8 mA					0.35	0.5	
1j	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
Чн	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	μA
۱Ľ	V _{CC} = MAX,	V1 = 0.4 V				- 0.4			- 0.4	mA
I _{OS} §	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
ICCH	V _{CC} = MAX,	V ₁ = 4.5 V			1.8	3.6		1.8	3.6	mA
ICCL	V _{CC} = MAX,	V _I = 0 V			3.3	6.6		3.3	6.6	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25^oC. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	түр	мах	UNIT	
^t PLH	A, B or C	×	$B_{1} = 2k\Omega$	C ₁ = 15 pF		8	15	ns
^t PHL	7, 5 0 0	'	$R_{L} = 2 k\Omega,$	С[-15р-		10	20	ns

recommended operating conditions

			SN54S11			SN74S11		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
$v_{\rm IH}$	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 1			-1	mA
IOL	Low-level output current			20			20	mA
т _А	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					UNIT					
PARAMETER		TEST CONDITIONS †		MIN	TYP ‡	MAX	MIN	TYP ‡	MAX	ONT
VIK	V _{CC} = MIN,	l ₁ = – 18 mA				- 1.2			- 1.2	v
V _{OH}	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} = 1 mA	2.5	3.4		2.7	3.4		V
VOL	V _{CC} = MIN,	V _{1L} = 0.8 V,	I _{OL} = 20 mA			0.5			0.5	V
II.	V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
Чн	V _{CC} = MAX,	V _I = 2.7 V				50			50	μA
ΊL	V _{CC} = MAX,	V ₁ = 0.5 V				- 2			- 2	mA
IOS §	V _{CC} = MAX			- 40		- 100	- 40		- 100	mA
ICCH	V _{CC} = MAX,	V _I = 4.5 V			13.5	24		13.5	24	mA
ICCL	V _{CC} = MAX,	V ₁ = 0 V			24	42		24	42	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	MIN	түр	мах	UNIT	
^t PLH			B 280 O	0 15 - 5		4.5	7	ns
^t PHL	A, B or C	× I	R _L = 280 Ω,	C _L = 15 pF		5	7.5	ns
^t РLН	A, B OF C		D - 200 0	5		6		ns
tph l			$R_{L} = 280 \Omega$,	C _L = 50 pF		7.5		ns

PACKAGE OPTION ADDENDUM

www.ti.com

15-Oct-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
JM38510/08001BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
JM38510/08001BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
JM38510/31001B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
JM38510/31001BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
JM38510/31001BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SN54LS11J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SN54S11J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SN74LS11D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS11DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS11DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS11DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS11DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS11DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS11J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS11N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS11N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS11NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74LS11NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS11NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS11NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S11D	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI
SN74S11N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74S11N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SNJ54LS11FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54LS11J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SNJ54LS11W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SNJ54S11FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54S11J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type
SNJ54S11W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type

(1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
 OBSOLETE: TI has discontinued the production of the device.

- **Operation From Very Slow Edges**
- Improved Line-Receiving Characteristics .
- **High Noise Immunity**

description

Each circuit functions as an inverter, but because of the Schmitt action, it has different input threshold levels for positive-going (V_{T+}) and negative-going (V_T) signals.

These circuits are temperature compensated and can be triggered from the slowest of input ramps and still give clean, jitter-free output signals.

SN5414, SN54LS14J OR W PACKAGE SN7414D, N, OR NS PACKAGE SN74LS14D, DB, OR N PACKAGE (TOP VIEW)
1A 🛛 1 🎽 14 🗍 V _{CC}
1Y 🛛 2 13 🗍 6A
2A 🛛 3 12 🗍 6Y
2Y 🛛 4 🛛 11 🗍 5A
3A 🛛 5 10 🗍 5Y
3Y 🛛 6 9 🗍 4A
GND 🛛 7 8 🗍 4Y
SN54LS14 FK PACKAGE (TOP VIEW)
A L A A A A A A A A A A A A A A A A A A
2A] 4 ^{3 2 1} 20 ¹⁹ 18 6Y
2Y 6 16 5A
NC 7 15 NC
3A 🗍 8 14 🗍 5Y
44 V C 37
ω N N 4 4

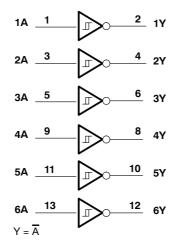
NC - No internal connection

TA	PACI	KAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN7414N	SN7414N
		Tube	SN74LS14N	SN74LS14N
		Tube	SN7414D	7414
0°C to 70°C	SOIC – D	Tape and reel	SN7414DR	7414
00010700	3010 - 0	Tube	SN74LS14D	LS14
		Tape and reel	SN74LS14DR	L514
	SOP – NS	Tape and reel	SN7414NSR	SN7414
	SSOP – DB	Tape and reel	SN74LS14DBR	LS14
		Tube	SN5414J	SN5414J
	CDIP – J	Tube	SNJ5414J	SNJ5414J
	CDIF - J	Tube	SN54LS14J	SN54LS14J
–55°C to 125°C		Tube	SNJ54LS14J	SNJ54LS14J
	CFP – W	Tube	SNJ5414W	SNJ5414W
	0FF - W	Tube	SNJ54LS14W	SNJ54LS14W
	LCCC – FK	Tube	SNJ54LS14FK	SNJ54LS14FK

ORDERING INFORMATION

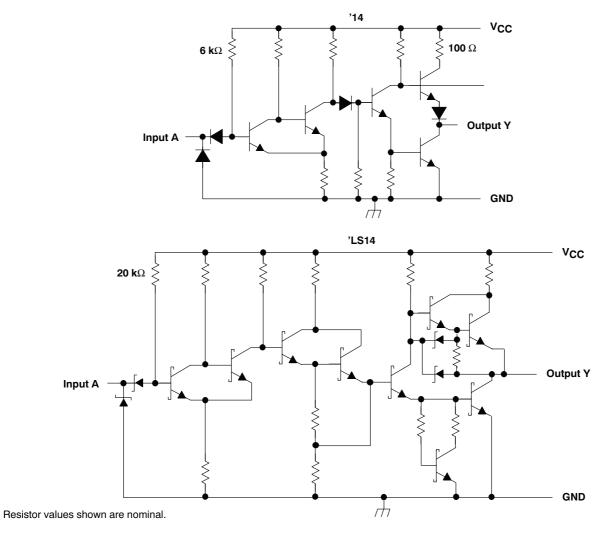
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


logic diagram (positive logic)

Pin numbers shown are for the D, DB, J, N, NS, and W packages.

schematic

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1)		
Input voltage: '14		5.5 V
'LS14		
Package thermal impedance, θ_{JA} (see No	ote 2): D package	
	DB package	
	N package	80°C/W
	NS package	
Storage temperaturerange, T _{stg}	·	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package termal impedance is calculated in accordance with JESD 51-7

recommended operating conditions

		SN5414 SN7414				UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
ЮН	High-level output current			-0.8			-0.8	mA
IOL	Low-level output current			16			16	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDIT	IONS‡		SN5414 SN7414			
				MIN	ΤΥΡ [§]	MAX		
V _{T+}	V _{CC} = 5 V			1.5	1.7	2	V	
V _{T-}	V _{CC} = 5 V			0.6	0.9	1.1	V	
Hysteresis (V _{T+} – V _{T–})	V _{CC} = 5 V			0.4	0.8		V	
VIK	V _{CC} = MIN,	lj = -12 mA				-1.5	V	
V _{OH}	V _{CC} = MIN,	V _I = 0.6 V,	I _{OH} = -0.8 mA	2.4	3.4		V	
V _{OL}	V _{CC} = MIN,	V _I = 2 V,	I _{OL} = 16 mA		0.2	0.4	V	
I _{T+}	V _{CC} = 5 V,	$V_I = V_{T+}$			-0.43		mA	
I _T _	V _{CC} = 5 V,	$V_I = V_{T-}$			-0.56		mA	
Ц	V _{CC} = MAX,	V _I = 5.5 V				1	mA	
Iн	V _{CC} = MAX,	V _{IH} = 2.4 V				40	μΑ	
۱ _{۱L}	V _{CC} = MAX,	V _{IL} = 0.4 V			-0.8	-1.2	mA	
los [¶]	V _{CC} = MAX			-18		-55	mA	
Іссн	$V_{CC} = MAX$				22	36	mA	
ICCL	V _{CC} = MAX				39	60	mA	

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

§ All typical values are at V_{CC} = 5 V, T_A = 25°C.

 ¶ Not more than one output should be shorted at a time.

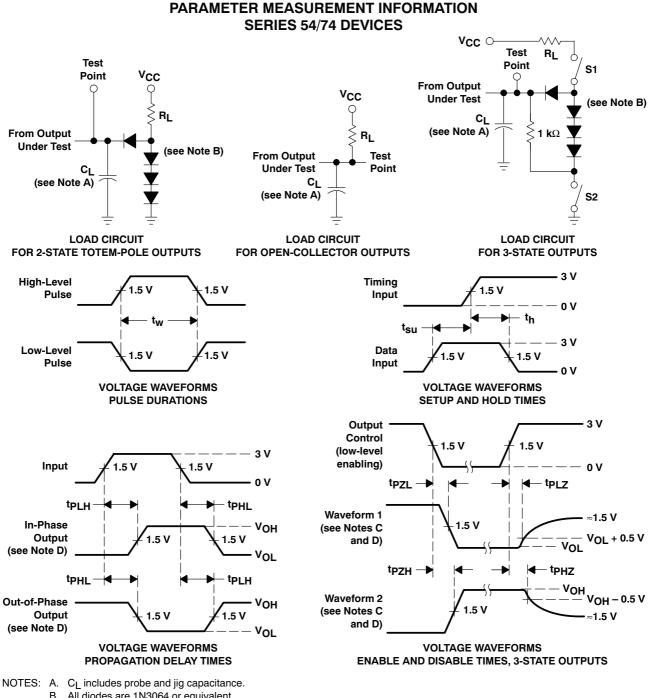
SN5414 FROM то SN7414 PARAMETER **TEST CONDITIONS** UNIT (OUTPUT) (INPUT) MIN TYP MAX 15 22 ^tPLH R_L = 400 Ω, А Υ C_L = 15 pF ns 15 22 ^tPHL

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

recommended operating conditions

		S	N54LS14	4	S	N74LS14	4	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
ЮН	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			4			8	mA
Т _А	Operating free-air temperature	-55		125	0		70	°C

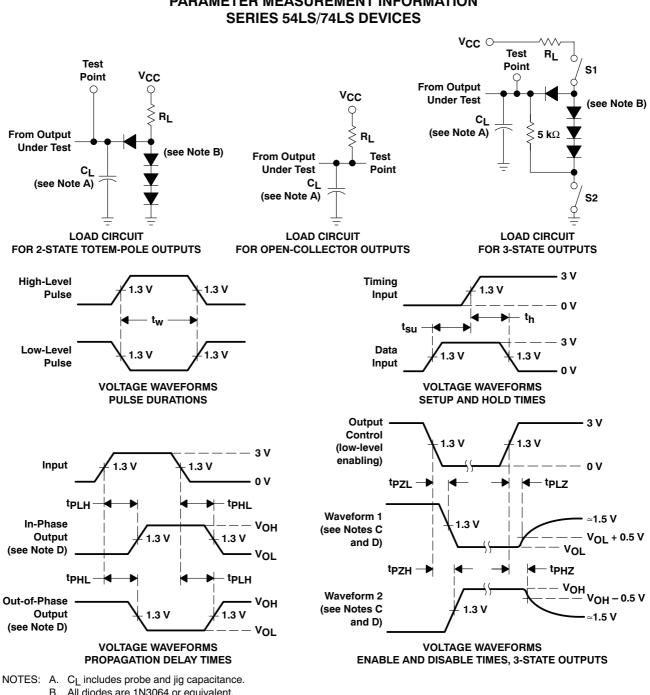
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)


PARAMETER				S	N54LS1	4	S	UNIT		
PARAMETER		TEST CONDITIONS [†]			TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V _{T+}	V _{CC} = 5 V			1.4	1.6	1.9	1.4	1.6	1.9	V
V _T -	V _{CC} = 5 V			0.5	0.8	1	0.5	0.8	1	V
Hysteresis (V _{T+} – V _{T–})	V _{CC} = 5 V			0.4	0.8		0.4	0.8		<
VIK	V _{CC} = MIN,	lı = -18 mA				-1.5			-1.5	V
VOH	$V_{CC} = MIN,$	V _I = 0.5 V,	I _{OH} = -0.4 mA	2.5	3.4		2.7	3.4		V
Vei	V _{CC} = MIN,	Vj = -1.9 V	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	0.4 V
V _{OL}	VCC = MIN,	v =-1.9 v	I _{OL} = 8 mA					0.35	0.5	v
I _{T+}	V _{CC} = 5 V,	$V_I = V_{T+}$			-0.14			-0.14		mA
I _{T-}	V _{CC} = 5 V,	$V_{I} = V_{T-}$			-0.18			-0.18		mA
Ц	$V_{CC} = MAX,$	V _I = 7 V				0.1			0.1	mA
Чн	$V_{CC} = MAX,$	V _{IH} = 2.7 V				20			20	μA
۱ _{۱L}	$V_{CC} = MAX,$	V _{IL} = 0.4 V				-0.4			-0.4	mA
los§	$V_{CC} = MAX$			-20		-100	-20		-100	mA
ІССН	V _{CC} = MAX				8.6	16		8.6	16	mA
ICCL	V _{CC} = MAX				12	21		12	21	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. [§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

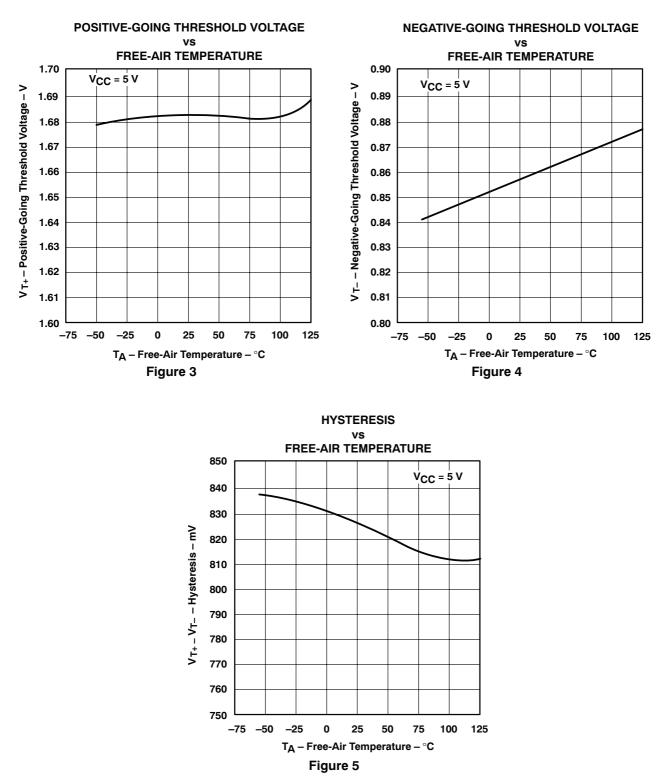
switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
^t PLH	Δ	v	R ₁ = 2 kΩ,	C _I = 15 pF		15	22	ns
tPHL	~	I	n <u> </u>	0 <u>[</u> = 15 pi		15	22	113



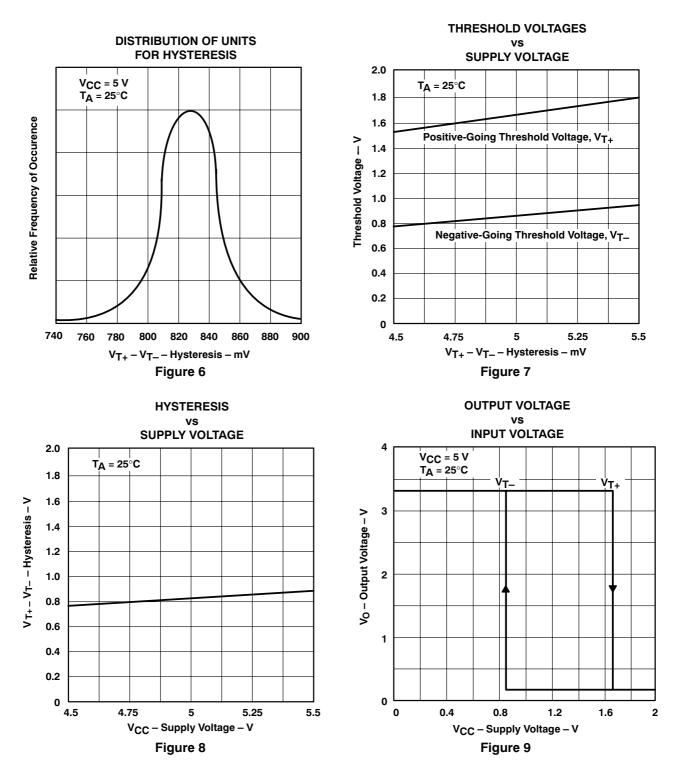
- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL. E. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω ; t_r and t_f \leq 7 ns for Series 54/74 devices and t_r and $t_f \le 2.5$ ns for Series 54S/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

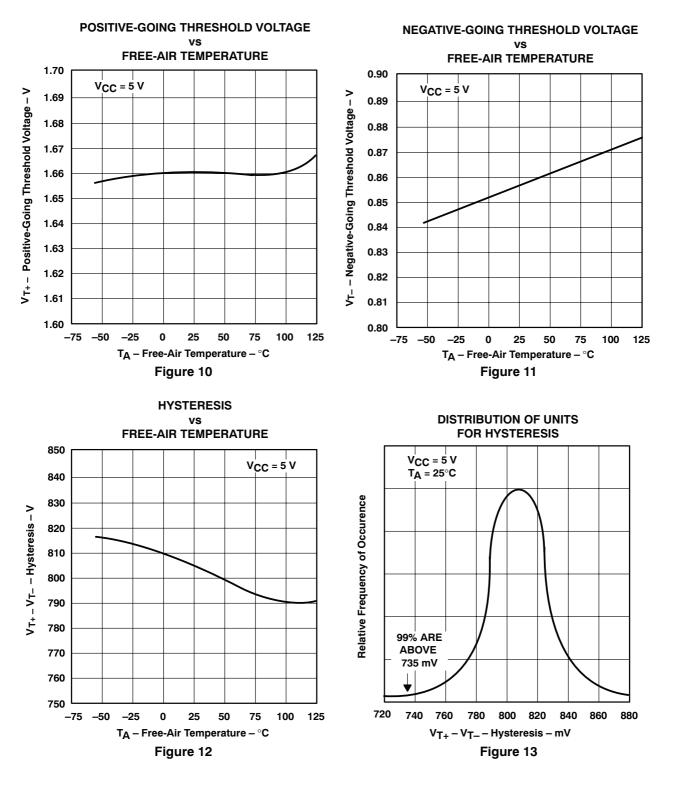
Figure 1. Load Circuits and Voltage Waveforms

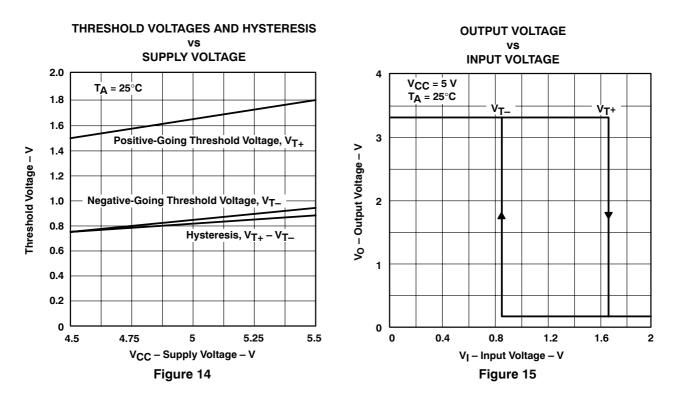


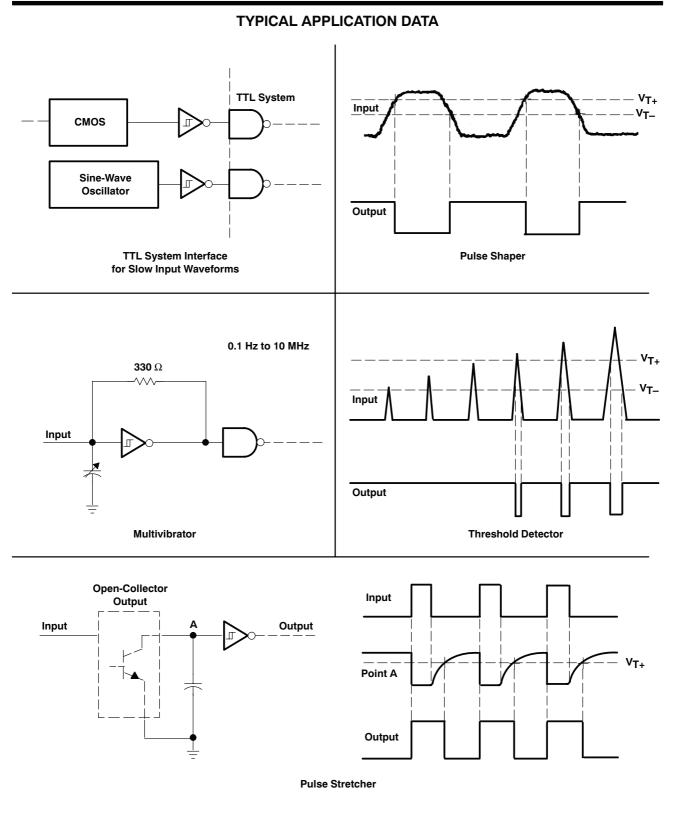
PARAMETER MEASUREMENT INFORMATION

- B. All diodes are 1N3064 or equivalent.
- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL. D.
- E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
- F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω , t_f \leq 1.5 ns, t_f \leq 2.6 ns.
- G. The outputs are measured one at a time with one input transition per measurement.


Figure 2. Load Circuits and Voltage Waveforms


TYPICAL CHARACTERISTICS OF '14 CIRCUITS[†]


TYPICAL CHARACTERISTICS OF '14 CIRCUITS[†]


TYPICAL CHARACTERISTICS OF 'LS14 CIRCUITS[†]

TYPICAL CHARACTERISTICS OF 'LS14 CIRCUITS[†]

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated

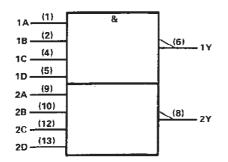
SN5420 . . . J PACKAGE

SN54LS20, SN54S20 ... J OR W PACKAGE

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

These devices contain two independent 4-input NAND gates.


The SN5420, SN54LS20, and SN54S20 are characterized for operation over the full military range of -55 °C to 125 °C. The SN7420, SN74LS20, and SN74S20 are characterized for operation from 0 °C to 70 °C.

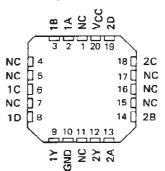
FUNCTION	TABLE	(each	gate)
----------	-------	-------	-------

INPUTS				OUTPUT
A	8	С	D	Y
н	Н	Н	н	Ļ
L	х	х	X	н
х	L	х	X	н
х	х	L	X	н
х	х	х	L	н

logic symbol[†]

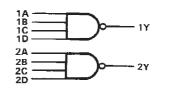
5

[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.


Pin numbers shown are for D, J. N, and W packages.

SN7420 . . . N PACKAGE SN74LS20, SN74S20 . . . D OR N PACKAGE (TOP VIEW) 1A 🗐 U 14⊒ Vcc 13 2D 1B 2 NC D3 120 2C 1C 🛛 4 11 NC 1D 🗍 5 10 2B 9 2A 1Y [6 8 2Y GND 7 SN5420 ... W PACKAGE (TOP VIEW) 1Y 📮 2 13 1C

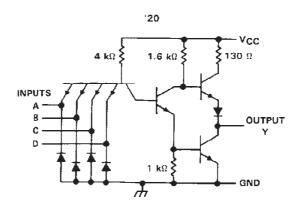
NC		12	Ρ	1B
CC	□4			GND
NC	₫5	10	Þ	2Y
2A		9		2D
2B		8	Þ	2C

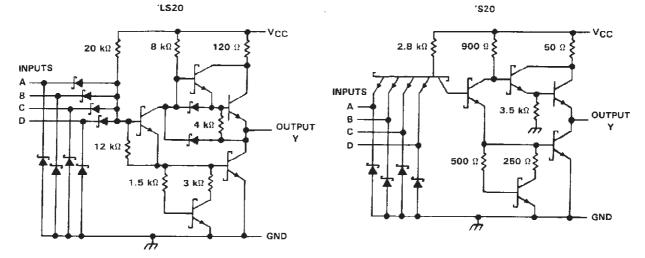

v

SN54LS20, SN54S20 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram


positive logic Y = $\overline{A \cdot B \cdot C \cdot D}$ or Y = \overline{A} + \overline{B} + \overline{C} + \overline{D}


PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications par the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN5420, SN54LS20, SN54S20, SN7420, SN74LS20, SN74S20 DUAL 4 INPUT POSITIVE NAND GATES

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		
Input voltage: '20, 'S20		5. 5 V
 Operating free-air temperature range: 	SN54'	-55°C to 125°C
	SN74'	0°C to 70°C
Storage temperature range		-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminals.

SN5420, SN7420 **DUAL 4-INPUT POSITIVE NAND GATES**

recommended operating conditions

	· · · · · · · · · · · · · · · · · · ·		SN5420			SN7420			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v	
VIH	High-level input voltage	2			2			v	
VIL	Low-level input voltage			0.8			0.8	v	
юн	High-level output current			- 0.4			- 0.4	mΑ	
IOL	Low-level output current			16			16	Αm	
TA	Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				\$N5420			SN7420			
PARAMETER		TEST CONDITIONS T	MIN	TYP‡	MAX	MIN	түр‡	MAX	UNIT	
VIK	V _{CC} = MIN,	li = - 12 mA		=	- 1.5			1.5	V	
⊻он	V _{CC} = MIN,	V _{IL} = 0.8 V, I _{OH} = - 0.4 mA	2.4	3.4		2.4	3.4		V	
VOL	V _{CC} = MIN,	V _{IH} =2V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V	
ų	V _{CC} - MAX,	V ₁ = 5.5 V			1		_	1	mΑ	
ЧΗ	V _{CC} = MAX,	V ₁ = 2.4 V			40			40	μA	
i L	V _{CC} = MAX,	V ₁ = 0.4 V		_	- 1.6			- 1.6	mΑ	
los§	V _{CC} = MAX	·	- 20		- 55	- 18		- 55	mA	
ICCH	V _{CC} = MAX,	V ₁ = 0 V		2	4		2	4	mΑ	
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V		6	11		6	11	mA	

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time.

ì

switching characteristics, V_{CC} = 5 V, T_A = 25° C (see note 2)

PARAMETER	FROM (INPUT)	то (о <mark>0тр</mark> ит)	TEST CONDITIONS		MIN	TYP	мах	UNIT
^t ₽LH		N.	D 100 c			12	22	ns
[™] HL	Any	Ŷ	R _L = 400 Ω,	CL = 15 pF		8	15	ns

SN54LS20, SN74LS20 DUAL 4-INPUT POSITIVE-NAND GATES

recommended operating conditions

	s	SN54LS20		SN74LS20				
	MIN	NOM	MAX	MIN	NOM	MAX		
VCC Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH High-level input voltage	2			2			v	
VIL Low-level input voltage			0.7			0.8	V	
IOH High-level output current			- 0.4			- 0,4	mΑ	
IOL Low-level output current			4			8	mΑ	
T _A Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS T			SN54LS	20		SN74LS	520	
I ANAME I EN				MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIK	VCC = MIN,	i _l = – 18 mA				- 1.5	1		- 1.5	V
⊻он	V _{CC} = MIN,	VIL = MAX,	I _{OH} = - 0.4 mA	2.5	3,4		2.7	3.4		v
Max	V _{CC} = MIN,	V _{IH} = 2 V,	loL ≈ 4 mA		0.25	0,4			0.4	
VOL	VCC = MIN,	VIH = 2 V,	IOL = 8 mA					0.25	0.5	
i,	VCC = MAX,	V ₁ = 7 V				0.1			0.1	mA
ļΗ	V _{CC} = MAX,	V ₁ = 2.7 V				20			20	MA
lιL	V _{CC} = MAX,	VI = 0.4 V				- 0.4			- 0.4	mΑ
los∮	V _{CC} = MAX			- 20		- 100	- 20		- 100	mΑ
Іссн	V _{CC} = MAX,	V = 0 V			0.4	0.8		0.4	0.8	mA
CCL	V _{CC} = MAX,	∨ ₁ = 4.5 ∨			1.2	2.2		1.2	2.2	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_{A} = 25^{\circ}$ C. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDI	MIN	ТҮР	MAX	UNIT	
tPLH	Any	Y	$B_1 = 2 k\Omega$,	CL = 15 pF		9	15	ns
^t PHL		•	Π <u></u> - 2 και,	CL - ISPF		10	15	ns

SN54S20, SN74S20 **DUAL 4-INPUT POSITIVE-NAND GATES**

recommended operating conditions

			SN54S20		SN74S20			- דואט
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.8			0.8	v
юн	High-level output current			- 1			- 1	mΑ
IOL	Low-level output current			20			20	mΑ
TA	Operating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS T	SN54S20	SN74S20	
PARAMETER		MIN TYP‡ MAX	ΜΙΝ ΤΥΡ‡ ΜΑΧ	UNIT
۷ _{IK}	$V_{CC} = MIN, I_{\uparrow} = -18 \text{ mA}$	-1.2	-1.2	v
∨он	V _{CC} = MIN, V _{IL} = 0.8 V, I _{OH} = -1 mA	2.5 3.4	2.7 3.4	v
VOL	V _{CC} = MIN, V _{1H} = 2 V, I _{OL} = 20 mA	0,5	0.5	V
1	V _{CC} = MAX, V ₁ = 5.5 V	1	1	mА
μн	V _{CC} = MAX, V ₁ = 2.7 V	50	50	μA
hι	V _{CC} = MAX, V _I = 0.5 V	-2	-2	mΑ
IOS §	V _{CC} = MAX	-40 -100	-40 -100	mA
ICCH	V _{CC} = MAX, V ₁ = 0 V	5 8	58	mA
ICCL	V _{CC} = MAX, V _I = 4.5 V	10 18	10 18	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions,

Ż

\$ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. \$ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	TEST CONDITIONS				UNIT
^t PLH			R _L = 280 Ω,	Cl = 15 pF		3	4.5	пş
^t ₽HL	1 R C - D	~	ML - 200 32,	0L - 10 bi		3	5	лъ
t₽LH	A, B, Cor D	Ť	B 290 O	C _I = 50 pF		4.5		ns
^t PHL			R _L = 280 Ω,	C[- 50 pF		5		ns

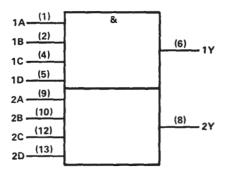
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

SN54LS21, SN74LS21 DUAL 4-INPUT POSITIVE-AND GATES

SDLS139 - APRIL 1985 - REVISED MARCH 1988

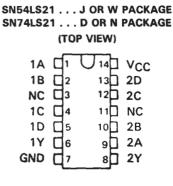
- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

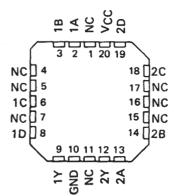

These devices contain two independent 4-input AND gates.

The SN54LS21 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74LS21 is characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

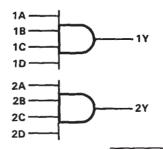

	INP	UTS	OUTPUT	
A	в	С	D	Y
н	н	н	н	н
L	x	х	x	L
X	L	х	X	L
X	х	L	X	L
X	х	х	L	L

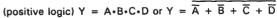
logic symbol[†]



[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

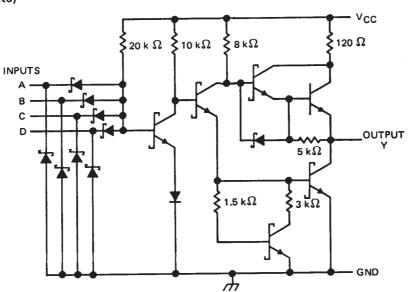



SN54LS21 . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

logic diagram

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 1988, Texas Instruments Incorporated

SN54LS21, SN74LS21 DUAL 4-INPUT POSITIVE-AND GATES

SDLS139 - APRIL 1985 - REVISED MARCH 1988

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage	
Operating free-air temperature range: SN54'	–55°C to 125°C
SN74'	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminals.

SN54LS21, SN74LS21 **DUAL 4-INPUT POSITIVE-AND GATES**

SDLS139 - APRIL 1985 - REVISED MARCH 1988

recommended operating conditions

			SN54LS21			SN74LS	521	
		MIN	NON	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	E	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
юн	High-level output current			- 0.4			- 0.4	mA
IOL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN54LS	521		SN74LS	21	UNIT
PARAMETER		TEST CONDITIONS T			TYP‡	MAX	MIN	TYP‡	МАХ	UNIT
VIK	V _{CC} = MIN,	I _I = 18 mA				- 1.5			1.5	V
VOH	V _{CC} = MIN,	V _{IH} = 2 V,	^I OH = - 0.4 mA	2.5	3.4		2.7	3.4		v
	V _{CC} = MIN,	VIL = MAX,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	V _{CC} = MIN,	VIL = MAX,	I _{OL} = 8 mA					0.35	0.5	· ·
1	V _{CC} = MAX,	VI = 7 V				0.1			0.1	mA
Чн	V _{CC} = MAX,	VI = 2.7 V				20			20	μA
կլ	V _{CC} = MAX,	VI = 0.4 V				- 0.4			- 0.4	mA
los§	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	V ₁ = 4.5 V			1.2	2.4		1.2	2.4	mA
ICCL	V _{CC} = MAX,	V _I = 0 V			2.2	4.4		2.2	4.4	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_A = 25⁰C § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	TEST CONDITIONS			MAX	UNIT
^t PLH		×		, C _L = 15 pF		8	15	ns
tPHL	Алу	Ť	R _L = 2 kΩ,			10	20	ns

SN5423, SN5425, SN7423, SN7425 DUAL 4-INPUT NOR GATES WITH STROBE

SDLS082

DECEMBER 1983-REVISED MARCH 1988

- Package Options Include Plastic and Ceramic DIPs and Ceramic Flat Packages
- Dependable Texas Instruments Quality and Reliability

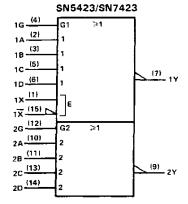
description

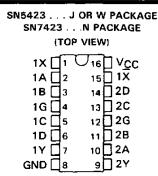
5

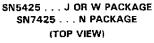
These devices contain dual 4-input positive NOR gates with strobe. They perform the Boolean function;

 $Y = \overline{G(A + B + C + D)}$ (with 1X and 1 \overline{X} of '23 left open).

The SN5423 and the SN5425 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7423 and the SN7425 are characterized for operation from 0 °C to 70 °C.

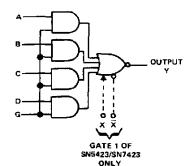

FUNCTION TABLE

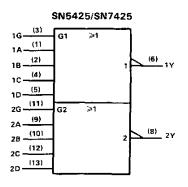

	IP	NPU1		OUTPUT	
A	B	С	D	G	Y
н	х	x	x	н	L
×	н	х	х	н	L
X	х	н	х	н	L
x	х	х	н	н	L
L	L	L	L	x	н
×	x	x	х	L	н


Expander inputs are open,

H = high level, L = low level, X = irrelevant

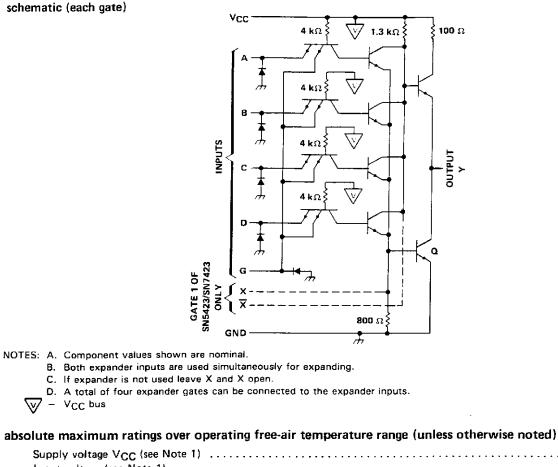
logic symbols[†]





1A [1B [1G [1C [1D [1 2 3 4 5	U 140 VCC 130 2D 120 2C 110 2G 100 2B
1D 🗋	5	10 2B
1Y 🗋	6	9 🗋 2 A
	7	8 2Y

logic diagram



[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers are for J, N, or W packages.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN5423, SN5425, SN7423, SNSN7425 DUAL 4-INPUT NOR GATES WITH STROBE

Supply voltage V _{CC} (see Note 1)	
Input voltage (see Note 1)	5.5 V
Interemitter voltage (see Note 2)	
Operating free-air temperature range: SN5423, SN5425 Circuits	
SN7423, SN7425 Circuits	
Storage temperature range	– 65°C to 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal. 2. This is the voltage between two emitters of a multiple-emitter transistor.

recommended operating conditions

				'23 , '25		
			MIN	NOM	MAX	UNIT
		54 Family	4.5	5	5.5	v
Vcc	Supply voltage	74 Family	4.75	5	5.25	1 *
⊻ін	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	v
ЮН	High-level output current				- 0.8	mΑ
		54 Family			16	
IOL	Low-level output current	74 Family			16	mΑ
_		54 Family	- 55		125	°C
Τ _Α	Operating free-air temperature range	74 Family	0		70	

The '23 is designed for use with up to four '60 expanders.

SN5423, SN5425, SN7423, SN7425 **DUAL 4 INPUT NOR GATES WITH STROBE**

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PAF	AMETER		TEST CO		MIN	түр‡	MAX	UNIT	
VI		V _{CC} = MIN,	lı = — 12 mA					- 1.5	v v
√он		V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = - 0.8 mA		2.4	3.4		V
VOL		V _{CC} = MIN,	V _{1H} = 2 V,	I _{OL} = 16 mA			0.2	0.4	V
<u> </u>		V _{CC} = MAX,	Vi = 5.5 V					1	mA
•	data inputs	Vcc = MAX,	Vi = 2.4 V				40	ДД	
ін	strobe inputs	VCC - MAA,	v -2.4 v			160	<u> </u>		
	data inputs	Vcc = MAX,	$\mathbf{V}_{1} = 0 4 \mathbf{V}_{2}$				1.6	mA	
4L	strobe inputs	*CC - MAA,	v - 0:4 v					- 6.4	
					54 Family	- 20		- 55	
los§ V _{CC} = MAX		VCC = MAX			74 Family	- 18		- 55	mA
ссн		V _{CC} = MAX,	All inputs at 0	v			8	16	mA
ICCL		V _{CC} = MAX,	All inputs at 5	V			10	19	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. Expander inputs X and \overline{X} are open.

2

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time.

electrical characteristics (SN5423 circuits) using expander inputs, V_{CC} = 4.5 V, T_A = -55° C

	PARAMETER	ETER TEST CONDITIONS						UNIT
 ۲	Expander current	V _X x = 0.4 V,	IOL = 16 mA				- 3.5	mΑ
VBE(Q)	Base-Emitter voltage of output transistor (Q)	I _{OL} = 16 mA,	IX + IX = 0.41 mA,	$R_{X\overline{X}} = 0$			1.1	v
Voн	High-level output voltage	1 _{OH} = - 0.4 mA,	Ix = 0.15 mA,	Ix = − 0.15 mA	2.4	3.4		V
VOL	Low-level output voltage	I _{OL} = 16 mA,	lχ + lχ = 0.3 mA,	R _X x z z π		0.2	0.4	V

electrical characteristics (SN7423 circuits) using expander inputs, V_{CC} = 4.75 V, T_A = 0° C

	PARAMETER	TEST	CONDITIONS		MIN	TYPT	MAX	UNIT
17	Expander current	Vxx = 0.4 ∨,	1 _{0L} = 16 mA				- 3.8	mΑ
VBE(Q)	Base-Emitter voltage of output transistor (Q)	I _{OL} = 16 mA,	IX + IX = 0.62 mA,	$R_X \overline{X} = 0$			1	v
	High-level output voltage	l _{OH} = 0.4 mA,	Iχ = 0.27 mA,	1 x = - 0.27 mA	2.4	3.4		v
VOL	Low-level output voltage	l _{OL} = 16 mA,	$1\chi + 1\chi = 0.43 \text{ mA},$	Ħχ ズ = 130 Ω		0.2	0.4	V

† All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics, V_{CC} = 5 V, T_A = 25° C, N = 10, (see note 3)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
^t PLH	$R_{L} = 400 \ \Omega,$ $C_{L} = 15 \ pF$	13	22	nş
^t PHL	$R_{L} = 400 \Omega,$ $C_{L} = 15 \rho F$	8	15	ns

NOTE 3: Switching characteristics of the SN5423 and SN7424 are tested with the expander pins open.

6-Dec-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finis	h MSL Peak Temp ⁽³⁾
5962-9763601QEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/00403BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
JM38510/00403BCA	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN5423J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SN5423J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SN5425J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN5425J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SN7423N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN7423N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI
SN7425N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN7425N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN7425N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN7425N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN7425NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN7425NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SNJ5423J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ5423J	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ5423W	OBSOLETE			16		TBD	Call TI	Call TI
SNJ5423W	OBSOLETE			16		TBD	Call TI	Call TI
SNJ5425J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ5425J	ACTIVE	CDIP	J	14	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ5425W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type
SNJ5425W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder

PACKAGE OPTION ADDENDUM

6-Dec-2006

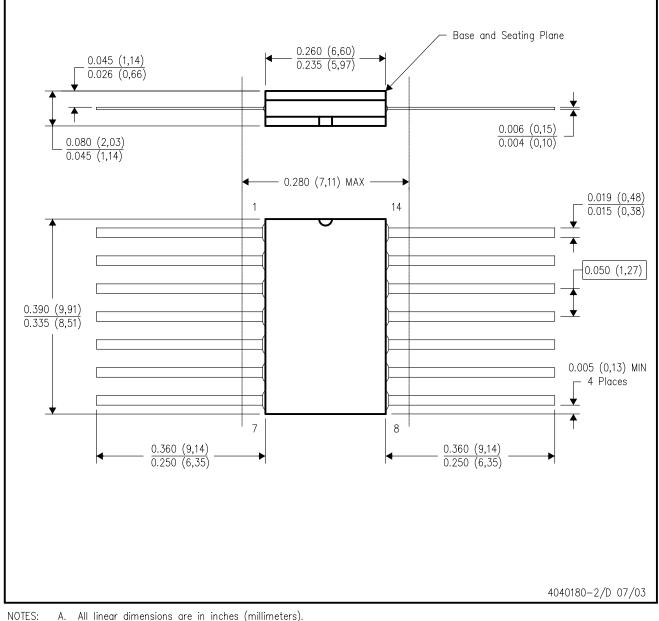
temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

25-Sep-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9763601QEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9763601QE A SNJ5423J	Samples
JM38510/00403BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00403BCA	Samples
JM38510/00403BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00403BCA	Samples
M38510/00403BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00403BCA	Samples
M38510/00403BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 00403BCA	Samples
SN5425J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN5425J	Samples
SN5425J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN5425J	Samples
SN7423N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN7423N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN7425N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN7425N	Samples
SN7425N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN7425N	Samples
SN7425N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	0 to 70		
SN7425N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	0 to 70		
SN7425NE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN7425N	Samples
SN7425NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN7425N	Samples
SNJ5423J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9763601QE A SNJ5423J	Samples
SNJ5423J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9763601QE A SNJ5423J	Samples
SNJ5423W	OBSOLETE			16		TBD	Call TI	Call TI	-55 to 125		

25-Sep-2013

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
SNJ5423W	OBSOLETE			16		TBD	Call TI	Call TI	-55 to 125		
SNJ5425J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ5425J	Samples
SNJ5425J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ5425J	Samples
SNJ5425W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ5425W	Samples
SNJ5425W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ5425W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

25-Sep-2013

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN5423, SN5425, SN7423, SN7425 :

• Catalog: SN7423, SN7425

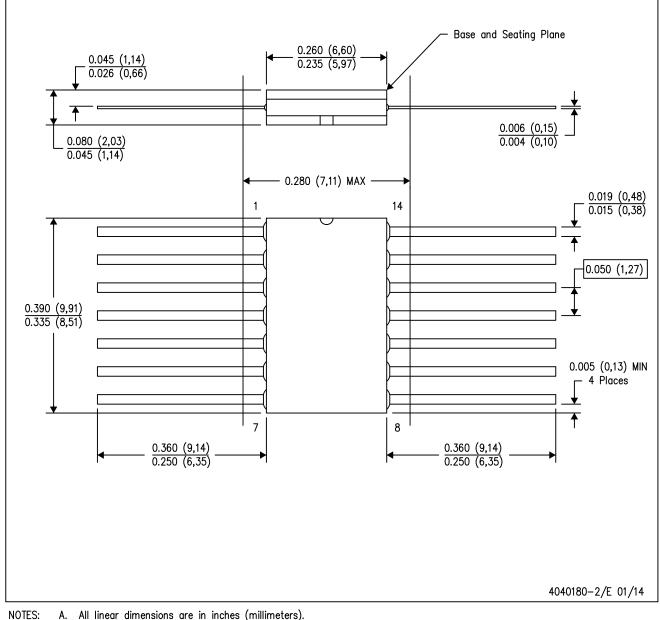
• Military: SN5423, SN5425

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

SN5427, SN54LS27, SN7427, SN74LS27 TRIPLE 3-INPUT POSITIVE-NOR GATES

SDLS089

DECEMBER 1983-REVISED MARCH 1988

•	Package Options Include Plastic "Small
	Outline" Packages, Ceramic Chip Carriers
	and Flat Packages, and Plastic and Ceramic
	DIPs

 Dependable Texas Instruments Quality and Reliability

description

These devices contain three independent 3-input NOR gates.

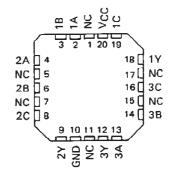
The SN5427 and SN54LS27 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7427 and SN74LS27 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

11	NPUT	s	OUTPUT
Α	В	С	Y
н	х	x	Ļ
Х	Н	x	L
Х	х	н	L
L	L	L	н

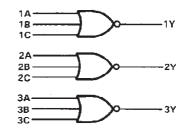
logic symbol[†]

ž


1A (1) 1B (2) 1C (13)	≥1	(12) 1Y
2A (3)		
2B (4)		(6) 2Y
2C (9)		
3B		(8) 3Y
3C		•

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

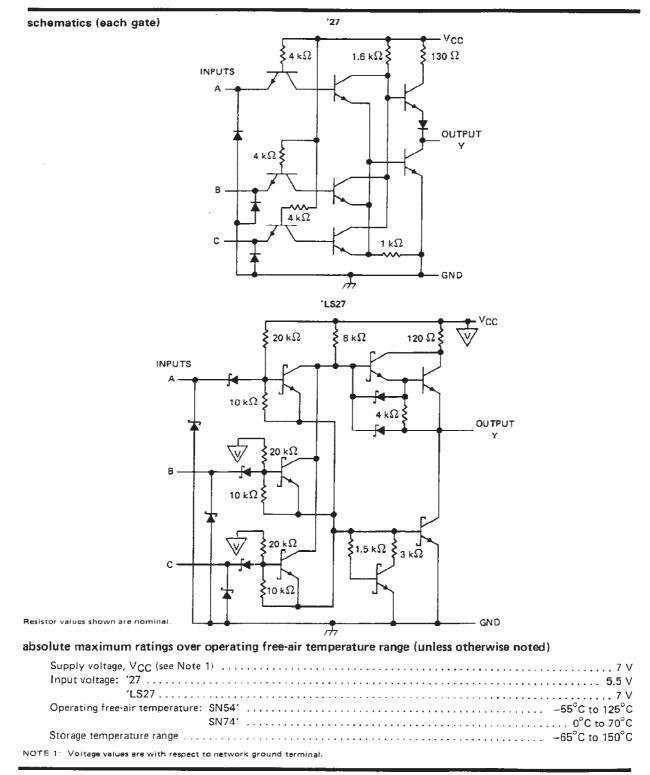
Pin numbers shown are for D, J, N, and W packages.


SN5427. SN54LS27 ... J OR W PACKAGE SN7427 . . . N PACKAGE SN74LS27 . . . D OR N PACKAGE (TOP VIEW) U14□Vcc 1B 🖸 2 130 1C 2A 🖾 3 120 1Y 28 ₫4 11 30 2C 🗋 5 10 3B 2Y 🔤 6 9 🗍 3 A GND 7 8 3Y

> SN54LS27 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram


positive logic

 $Y = \overline{A + B + C}$ or $Y = \overline{A} \cdot \overline{B} \cdot \overline{C}$

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard werranty. Production pracessing does not necessarily include testing of all parameters.

SN5427, SN54LS27, SN7427, SN74LS27 TRIPLE 3-INPUT POSITIVE-NOR GATES

recommended operating conditions

_		SN5427			SN7427			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	V	
VIH High-level input voltage	2			2			v	
VIL Low-level input voltage			0.8			0.8	V	
IOH High-level output current			0.8			- 0.8	mΑ	
IQL Low-level output current			16			16	mΑ	
T _A Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS †		SN5427				, [
FADAMETED				MIN	TYP ‡	MAX	MIN	түр‡	МАХ	UNIT
VIK	V _{CC} = MIN,	I ₁ = – 12 mA				- 1.5			- 1.5	٧
Vон	V _{CC} = MIN,	VIL = 0.8 V,	I _{OH} = - 0.8 mA	2.4	3.4		2,4	3.4		v
V _{OL}	V _{CC} = MIN,	V _{IH} = 2 V,	l _{OL} = 16 mA		0.2	0.4		0.2	0.4	v
l <u>ı</u>	V _{CC} = MAX,	V† = 5.5 V				1			1	mA
ήн	V _{CC} = MAX,	V1 = 2.4 V				40			40	μA
կլ	V _{CC} = MAX,	V ₁ = 0.4 V				- 1.6			- 1.6	mA
IOS §	V _{CC} = MAX			- 20		- 55	- 18		- 55	mA
іссн	VCC = MAX,	VI = 0 V			10	16		10	16	mA
ICCL	V _{CC} = MAX,	See Note 2			16	26		16	26	mA

+ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

Ì

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25° C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	түр	мах	UNIT
tPLH	A, B or C	v	B: = 400 D	C 15 - 5		10	15	ns
tPHL	A, 5 0 C	Y Y	RL = 400 Ω.	CL = 15 pF		7	11	ns

SN54LS27, SN74LS27 **TRIPLE 3-INPUT POSITIVE-NOR GATES**

recommended operating conditions

		S	SN54LS27		SN74LS27			UNIT
_		MIN	NOM	MAX	MIN	NOM	МАХ	UNT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.7			0.8	V
Iон	High-level output current			- 0.4			- 0.4	mА
IOL	Low-level output current			4			В	mA
ТА	Operating free-air temperature	- 55		125	0		70	°c

-

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN54LS27			SN74LS27			
PARAMETER		TEST CONDI	TEST CONDITIONS †		TYP‡	MAX	MIN	TYP ‡	MAX	UNIT
۷ıĸ	V _{CC} = MIN,	lj = - 18 mA				- 1. 5			- 1.5	v
Vон	V _{CC} = MIN,	V _{IL} = MAX,	l _{OH} ≐ – 0.4 mA	2.5	3.4		2.7	3.4		v
	Vcc = MIN,	V _{1H} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	V _{CC} = MIN,	ViH = 2 V.	IOL = 8 mA					0.35	0.5	v
Ц	V _{CC} = MAX,	V1 = 7 V				0.1			0.1	mΑ
Чн	VCC = MAX,	V į ≠ 2.7 V			-	20			20	μA
hι	V _{CC} = MAX,	V _I ≠ 0.4 V				- 0.4			- 0.4	mA
los §	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
ICCH	V _{CC} = MAX,	V = 0 V			2	4		2	4	mΑ
ICCL	VCC = MAX.	See Note 2			3.4	6.8		3.4	6.8	mA

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. **‡** All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. **§** Not more then one output should be shorted at a time, and the duration of the short-circuit should not exceed one second. NOTE 2: One Input at 4.5 V, all others at GND.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS			түр	мах	UNIT
TPLH		v	R _L ≃ 2 kΩ,	C 15 - C		10	15	пs
TPHL	A, B or C	ſ	n 2 Kaz,	C _L = 15 pF		10	15	ns

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

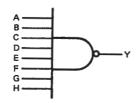
Copyright © 1996, Texas Instruments Incorporated

SN5430, SN54LS30, SN54S30 SN7430, SN74LS30, SN74S30 8-INPUT POSITIVE-NAND GATES SDLS099 - DECEMBER 1983 - REVISED MARCH 1988

I DACKAOF

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

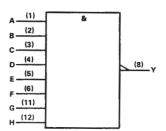
description


These devices contain a single 8-input NAND gate.

The SN5430, SN54LS30, and SN54S30 are characterized for operation over the full military range of -55 °C to 125 °C. The SN7430, SN74LS30, and SN74S30 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE

INPUTS A THRU H	OUTPUT Y
All inputs H	L
One or more inputs L	н


logic diagram

positive logic

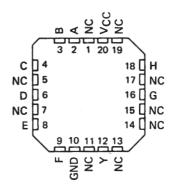
$$Y = \overline{A \cdot B \cdot C \cdot D \cdot E \cdot F \cdot G \cdot H} \text{ or}$$
$$Y = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{E} + \overline{F} + \overline{G} + \overline{H}$$

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

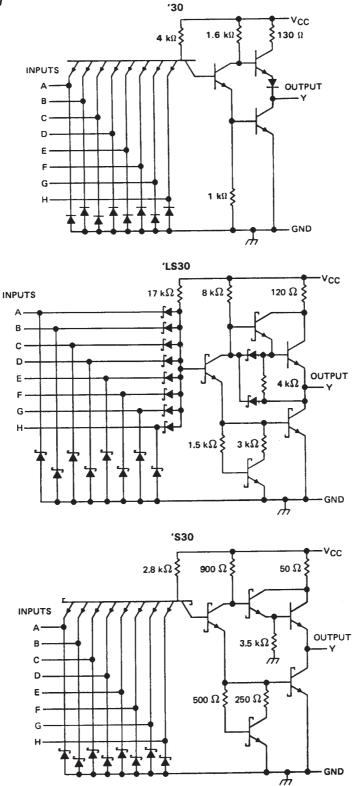

CNE420

A [1 B [2 C [3 D [4 E [5 F [6	U 14 VCC 13 NC 12 H 11 G 10 NC 9 NC
	Y [8
GND [7	8 Y

SN5430 . . . W PACKAGE (TOP VIEW)

NC C	1	U 14	Ь	NC
AC	2	13	þ	NC
вС	3	12	þ	Y
Vcc 🗆	4	. 11	þ	GND
СС	5	10	þ	н
DC	6	9	þ	G
E	7	8	Þ	F

SN54LS30, SN54S30 . . . FK PACKAGE (TOP VIEW)



NC - No internal connection

Copyright © 1988, Texas Instruments Incorporated

SN5430, SN54LS30, SN54S30 SN7430, SN74LS30, SN74S30 8-INPUT POSITIVE-NAND GATES SDLS099 - DECEMBER 1983 - REVISED MARCH 1988

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V	V
Input voltage	V
Operating free-air temperature range: SN5430	С
SN7430 0°C to 70°C	С
Storage temperature range	С

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5430)	SN7430			
		MIN	NOM	MAX	MIN	NOM	мах	UNIT
V _{CC} Su	upply voltage	4.5	5	5.5	4.75	5	5.25	v
V _{IH} H	igh-level input voltage	2			2			v
VIL L	ow-level input voltage			0.8			0.8	v
юн н	igh-level output current			- 0.4			- 0.4	mA
IOL L	ow-level output current			16			16	mA
T _A O	perating free-air temperature	- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS T		SN5430			SN7430			
PARAMETER		TEST CONDITIONS [†]	MIN	TYP‡	MAX	MIN	түр‡	MAX	UNIT	
VIK	V _{CC} = MIN,	l _l = − 12 mA			- 1.5			- 1.5	V	
V _{OH}	V _{CC} = MIN,	V _{IL} = 0.8 V, 1 _{OH} = − 0.4 mA	2.4	3.4		2.4	3.4		v	
VOL	V _{CC} = MIN,	V _{IH} = 2 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	V	
4	V _{CC} = MAX,	V ₁ = 5.5 V			1			1	mA	
ЦН	V _{CC} = MAX,	V ₁ = 2.4 V			40			40	μA	
կլ	V _{CC} = MAX,	V1 = 0.4 V			- 1.6			- 1.6	mA	
IOS§	V _{CC} = MAX		- 20		- 55	- 18		- 55	mA	
Іссн	V _{CC} = MAX,	V ₁ = 0		. 1	2		1	2	mA	
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V		3	6		3	6	mA	

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
tPLH	Any				13	22	ns
tPHL		Y	R _L = 400 Ω, C _L = 15 pF		8	15	ns

SN5430, SN54LS30, SN54S30 SN7430, SN74LS30, SN74S30 8-INPUT POSITIVE-NAND GATES SDLS099 - DECEMBER 1983 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1) 7 V
Input voltage
Operating free-air temperature range: SN54LS30
SN74LS30
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN54LS30			SN74LS30			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v	
VIH	High-level input voltage	2			2			v	
VIL	Low-level input voltage			0.7			0.8	V	
юн	High-level output current			- 0.4			- 0.4	mA	
IOL	Low-level output current			4			8	mA	
TA	Operating free-air temperature	- 55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS †			SN54LS	30		SN74LS	30	UNIT
PARAMETER		TEST CONDIT	TONST	MIN	түр‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	l _l = — 18 mA				- 1.5			- 1.5	V
V _{OH}	V _{CC} = MIN,	VIL = MAX,	I _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		V
	V _{CC} = MIN,	V _{IH} = 2 V,	l _{OL} ≖ 4 mA		0.25	0.4			0.4	- ~
VOL	V _{CC} = MIN,	V _{1H} = 2 V,	I _{OL} = 8 mA					0.25	0.5	
ų	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
ін	V _{CC} = MAX,	V _I = 2.7 V				20			20	μA
μL	V _{CC} = MAX,	V1 = 0.4 V				- 0.4			- 0.4	mA
los§	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	V = 0			0.35	0.5		0.35	0.5	mA
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V			0.6	.1.1		0.6	1.1	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \pm All typical values are at V_{CC} = 5 V, T_A = 25^oC § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	мах	UNIT
^t PLH	A D V	v			8	15	ns
^t PHL	Апу	T	$R_{L} = 2 k\Omega, \qquad C_{L} = 15 pF$		13	20	ns

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)
Input voltage
Operating free-air temperature range: SN54S30
SN74S30 0°C to 70°C
Storage temperature range

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54S30			SN74S30			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	v	
VIH High-level input voltage	2			2			V	
VIL Low-level input voltage			0.8			0.8	v	
IOH High-level output current			- 1			- 1	mA	
IOL Low-level output current			20			20	mA	
T _A Operating free-air temperature	55		125	0		70	°c	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS			SN54S30			SN74S30			
PARAMETER		TEST CONDIT	TIONS I	MIN	TYP‡	МАХ	MIN	TYP‡	MAX	UNIT	
VIK	V _{CC} = MIN,	1 _l = −18 mA				-1.2			-1.2	v	
V _{OH}	V _{CC} = MIN,	V _{IL} ≖ 0.8 V,	1 _{OH} = - 1 mA	2.5	3.4		2.7	3.4		V	
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	1 _{OL} = 20 mA			0.5			0.5	v	
1	V _{CC} = MAX,	V _I = 5.5 V				1			1	mA	
ЧН	V _{CC} = MAX,	V ₁ = 2.7 V				50			50	μA	
١L	V _{CC} = MAX,	V ₁ = 0.5 V				-2			-2	mA	
IOS§	V _{CC} = MAX			-40		-100	-40		-100	mA	
Іссн	V _{CC} = MAX,	V1 = 0			3	5		3	5	mA	
ICCL	V _{CC} = MAX,	V ₁ = 4.5 V			5.5	10		5.5	10	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

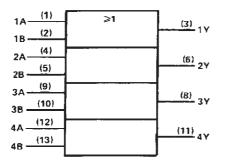
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONI	TEST CONDITIONS				UNIT
tpl.H			R _L = 280 Ω,	CL = 15 pF		4	6	ns
^t PHL		Y	AL - 200 32,			4.5	7	ns
tPLH	Any			0 50 - 5		5.5		ns
^t PHL			$R_{L} = 280 \Omega$,	С _L = 50 pF		6.5		ns

SDLS100

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

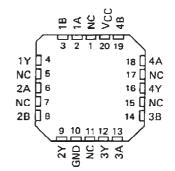

These devices contain four independent 2-input OR gates.

The SN5432, SN54LS32 and SN54S32 are characterized for operation over the full military range of -55 °C to 125 °C. The SN7432, SN74LS32 and SN74S32 are characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE (each gate)

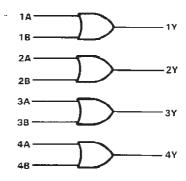
INP	UTS	OUTPUT
Α	B	Y
н	х	н
×	- н	H
L	L	L

logic symbol[†]


 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D. J. N. or W packages.

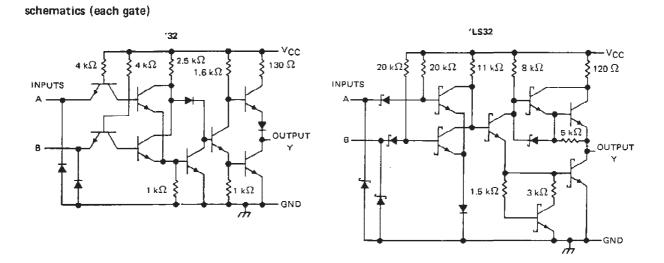
SN5432, SN54LS32, SN54S32, SN7432, SN74LS32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES DECEMBER 1983 – REVISED MARCH 1988

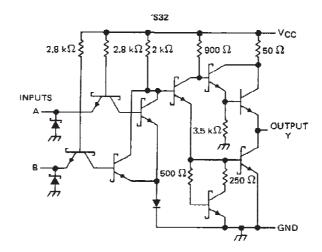

SN5432, SN54LS32, SN54S32 J OR W PACKAGE
SN7432 N PACKAGE
SN74LS32, SN74S32 D OR N PACKAGE
(TOP VIEW)

SN54LS32, SN54S32 ... FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram


positive logic


 $Y = A + B \text{ or } Y = \overline{\overline{A} \cdot \overline{B}}$

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN5432, SN54LS32, SN54S32, SN7432, SN74LS32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage: '32, 'S32	5.5 V
'L\$32	
Operating free-air temperature: SN54'	
	0°C to 70°C
Storage temperature range	
NOTE 1: Voltage values are with respect to network ground terminal.	

SN5432, SN7432 QUADRUPLE 2 INPUT POSITIVE OR GATES

recommended operating conditions

			SN5432			SN7432			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5,5	4.75	5	5.25	v	
⊻ін	Hgh-level input voltage	2			2	_		V	
VIL	Low-level imput voltage			0.8			0,8	V	
юн	High-level output current			- 0.8			~ 0.8	mΑ	
IOL.	Low-level output current			16			16	Am	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS †			SN5432						
PARAMETER					TYP‡	МАХ	MIN	TYP‡	MAX	UNIT
VIK	VCC = MIN,	lj = - 12 mA				- 1.5			- 1,5	V
VOH.	V _{CC} = MIN,	V _{IH} ≈ 2 V,	l _{OH} ≠ − 0.8 mA	2.4	3.4		2,4	3.4		V
VOL	$V_{CC} = MIN,$	_V _{1L} ≈ 0.8 V,	IOL = 16 mA		0.2	0.4		0.2	0.4	V
<u> </u>	VCC = MAX,	VI = 5.5 V				1			1	mΑ
ЦН	V _{CC} = MAX,	V1 = 2.4 V				40			40	μA
46	V _{CC} = MAX,	VI = 0.4 V				- 1.6			- 1.6	mΑ
los§	V _{CC} = MAX			- 20		- 55	_ 18		- 55	mΑ
Іссн	V _{CC} = MAX,	See Note 2			15	22		15	22	mA
CCL	VCC * MAX,	V1 = 0 V			23	38		23	38	mA

Č

.

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	IDITIONS	MIN	түр	MAX	UNIT
TPLH	A or 8	×	R _L = 400 Ω,	C. = 15 pE		10	15	ris
†PHL	2015	· · · · · · · · · · · · · · · · · · ·	11 <u></u> - 400 <i>sz</i> ,	CL = 15 pF		14	22	ns

SN54LS32, SN74LS32 QUADRUPLE 2-INPUT POSITIVE OR GATES

recommended operating conditions

			SN54LS32			SN74LS32		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	Hgh-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			8,0	V
юн	High-level output current			- 0,4			- 0.4	mA
10L	Low-level output current			4			8	mΑ
Тд	Opertating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		ZEAT CONDU			SN54LS	32		SN74LS	32	UNIT
PARAMETER	TEST CONDITIONS †		MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNT	
Viĸ	V _{CC} - MIN,	l ₁ = 18 mA				- 1.5			- 1.5	v
∨он	VCC = MIN,	V _{IH} = 2 V,	I _{OH} = - 0,4 mA	2,5	3.4		2.7	3.4		V
14	V _{CC} - MIN,	VIL = MAX,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
Vol	VCC = MIN,	VIL = MAX,	IOL = 8 mA					0.35	0,5	· ·
lj –	V _{CC} = MAX,	V ₁ = 7 V				0.1			0,1	mA
IIH	V _{CC} = MAX,	VI = 2.7 V				20			20	μA
IIL.	V _{CC} = MAX,	VI = 0.4 V				- 0.4			- 0.4	mA
los §	VCC = MAX			- 20		- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	See Note 2			3.1	6.2		3,1	6.2	mA
ICCL	V _{CC} = MAX,	V ₁ = 0 V			4.9	9.8		4.9	9.8	mΑ

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS			түр	мах	UNIT
tPLH	1 az B	V	D 010	0 - 15 -		14	22	пs
tPHL	A or B	T	$R_{L} = 2 k \Omega,$	CL = 15 pF		14	22	ns

SN54S32, SN74S32 QUADRUPLE 2-INPUT POSITIVE-OR GATES

recommended operating conditions

			SN54S32			SN74532			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v	
VIH	High-level input voltage	2	· · ·		2			V	
VIL	Low-level input voltage			0.8			0.8	V	
ЮН	High-level output current			1			- 1	mΑ	
[†] OL	Low-level output current			20			20	mΑ	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS T			SN54S3	2		2	1.0.1.7	
PANAMETEN				MIN	TYP ‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	VCC = MIN,	lj = — 18 mA				- 1.2			- 1.2	V
∨он	Vcc = MIN.	V _{IH} ≈ 2 V,	IOH = - 1 mA	2.5	3.4		2.7	3.4		V
Vol	V _{CC} = MIN,	V _{IL} = 0.8 V,	IOL = 20 mA	- 1 -		0.5			0.5	V
4	V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
Чн	VCC = MAX,	VI = 2.7 V				50			50	μA
ΪL	VCC = MAX,	Vi = 0.5 V				- 2			- 2	mA
los§	V _{CC} = MAX			- 40		— 1 00	- 40		- 100	mA
ССН	V _{CC} = MAX,	See Note 2	-		18	32		18	32	mA
CCL	VCC = MAX,	V1 = 0 V			- 38	68		38	68	mA

2

-

‡ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

The resonances shown as the original tensor of the appropriate spectrum sheet recommended operating conditions \pm All typical values are at V_{CC} = 5 V, T_A = 28°C. § Not more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. NOTE 2: One input at 4.5 V, all others at GND.

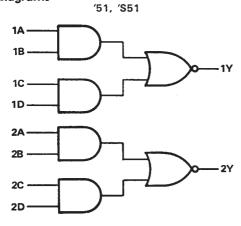
switching characteristics, VCC = 5 V, TA = 25° C (see note 3)

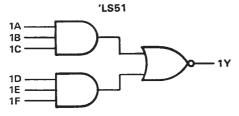
PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS		MIN TYP	МАХ	UNIT
tPLH	A	v	D - 270 O	0 15 - 5	4	7	ns
tPHL)	A or B	,	RL = 280 Ω,	CL = 15 pF	4	7	ns
^t PLH	A or 8	Y	RL = 280 Ω,	CL = 50 pF	5		пѕ
tPHL .					5		ns

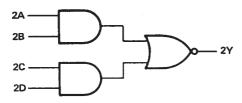
SN5451, SN54LS51, SN54S51 SN7451, SN74LS51, SN74S51 AND-OR-INVERT GATES

SDLS113 - DECEMBER 1983 - REVISED MARCH 1988

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability


description


The '51 and 'S51 contain two independent 2-wide 2-input AND-OR-INVERT gates. They perform the Boolean function $Y = \overline{AB + CD}$.


The 'LS51 contains one 2-wide 3-input and one 2-wide 2-input AND-OR-INVERT gates. They perform the Boolean functions $1Y = (1A \cdot 1B \cdot 1C) + (1D \cdot 1E \cdot 1F)$ and $2Y = (2A \cdot 2B) + (2C \cdot 2D)$.

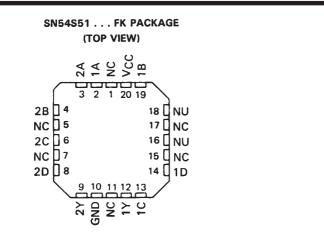
The SN5451, SN54LS51, and SN54S51 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN7451, SN74LS51 and SN74S51 are characterized for operation from 0 °C to 70 °C.

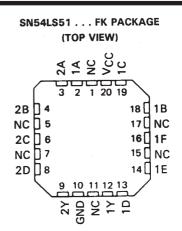
logic diagrams

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN5451 J PACKAGE					
SN54S51 J OR W PACKAGE					
SN7451 N PACKAGE					
SN74S51 D OR N PACKAGE					
(TOP VIEW)					

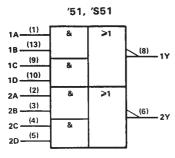
1A [2A [2B [2C [2D [2Y [1 2 3 4 5 6	14 VCC 13 18 12 NU 11 NU 10 1D 9 1C 11
GND [と	8 1Y


SN5451 . . . W PACKAGE (TOP VIEW)


NU	ф	U 14	1D
NU		13] 1C
1A		12	D 1 Y
Vcc	d₄	11	🗅 GND
1B	d٩	10	2Y
2A	Цe	5 9	2D
2B	d,	8	2C
	- L		

SN54LS51 . . . J OR W PACKAGE SN74LS51 . . . D OR N PACKAGE (TOP VIEW)

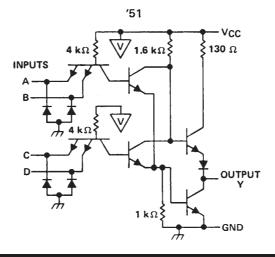
1A C 2A C 2B C 2C C 2D C	1 2 3 4 5 6	U 14 13 12 11 10		VCC 1C 1B 1F 1E 1D
29 [27 [GND [6	9	Б Б	1D 1Y


NC- No internal connection NU - Make no external connection

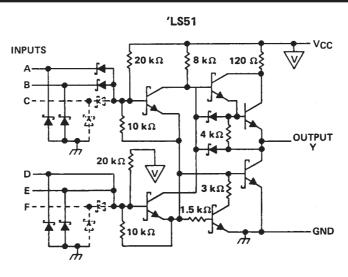
NC - No internal connection NU - Make no external connection

logic symbols[†]

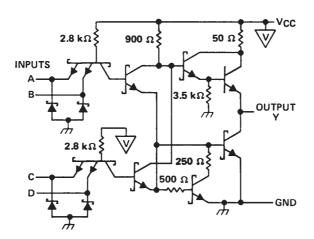
positive logic: $Y = \overline{AB + CD}$



positive logic:


 $1Y = \overline{(1A \cdot 1B \cdot 1C) + (1D \cdot 1E \cdot 1F)}$ $2Y = \overline{(2A \cdot 2B) + (2C \cdot 2D)}$

 $^{\dagger} These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.$


schematics

′S51

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (See Note 1): '51, 'LS51, 'S51	
Input voltage: '51, 'S51	5.5 V
′LS51	7V
Operating free-air temperature range: SN54'	-55°C to 125°C
SN74′	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5451			SN7451			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
V _{CC} Su	pply voltage	4.5	5	5.5	4.75	5	5.25	V	
	gh-level input voltage	2			2			V	
VIL LO	w-level input voltage			0.8			0.8	V	
IOH Hig	gh-level output current			- 0.4			- 0.4	mA	
OL LO	w-level output current			16			16	mA	
T _A Op	erating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN5451			SN7451		UNIT
PARAMETER		TEST COND	ITIONS T	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	$I_1 = -12 mA$				- 1.5			- 1.5	V
VOH	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = 0.4 mA	2.4	3.4		2.4	3.4		V
VOL	V _{CC} = MIN,	V _{1H} = 2 V,	1 _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
Li	V _{CC} = MAX,	V _I = 5.5 V				1			1	mΑ
Чн	V _{CC} = MAX,	V ₁ = 2.4 V	··········			40			40	μA
ΠĽ.	V _{CC} = MAX,	V _I = 0.4 V				- 1.6			- 1.6	mA
IOS§	V _{CC} = MAX			- 20		- 55	- 18		- 55	mA
ICCH	V _{CC} = MAX,	V ₁ = 0 V			4	8		4	8	mA
ICCL	V _{CC} = MAX,	See Note 2			7.4	14		7.4	14	mA

† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. ‡ All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time.

NOTE 2: All inputs of one AND gate at 4.5 V, all others at GND.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN	түр	МАХ	UNIT
^t PLH		v	D 100 O	0 15 - 5		13	22	ns
^t PHL	Any	Ť	R _L = 400 Ω,	CL = 15 pF		8	15	115

SDLS113 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

		S	SN54LS51			SN74LS51			
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Vcc	Supply voltage	4.5	5	5,5	4.75	5	5.25	V	
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage			0.7			0.8	V	
юн	High-level output current			- 0.4			- 0.4	mA	
IOL	Low-level output current			4			8	mA	
TA	Operating free-air temperature	- 55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		7507 0000		S	N54LS5	51	S	N74LS5	51	UNIT
PARAMETER		TEST COND	ITIONS T	MIN	TYP ‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	V _{CC} = MIN,	l _l = – 18 mA				- 1.5			- 1.5	• V
VOH	V _{CC} = MIN,	$V_{IL} = MAX,$	I _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		V
Max	$V_{CC} = MIN,$	V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	$V_{CC} = MIN,$	V _{IH} = 2 V,	IOL = 8 mA					0.35	0.5	v
l <u>i</u>	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
Чн	V _{CC} = MAX,	V _I = 2.7 V				20			20	μA
կլ	V _{CC} = MAX,	V = 0.4 V				- 0.4			- 0.4	mA
IOS§	V _{CC} = MAX			- 20		- 100	- 20		- 100	mA
Іссн	V _{CC} = MAX,	V ₁ = 0 V			0.8	1.6		8.0	1.6	mA
ICCL	V _{CC} = MAX,	See Note 2			1,4	2.8		1.4	2.8	mA

t For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at V_{CC} = 5 V, T_A = 25°C.

§ Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

NOTE 2: All inputs of one AND gate at 4.5 V, all others at GND.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	IDITIONS	MIN TYP	МАХ	UNIT
^t PLH	A	V	P 140	C. = 15 pE	12	20	ns
^t PHL	Αηγ	Ť	$R_{L} = 2 k\Omega,$	C _L = 15 pF	12.5	20	ns

SN5451, SN54LS51, SN54S51 SN7451, SN74LS51, SN74S51 **AND-OR-INVERT GATES**

SDLS113 – DECEMBER 1983 – REVISED MARCH 1988

recommended operating conditions

			SN54S5	1		SN74S5	1	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5,5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			1			- 1	mA
IOL	Low-level output current			20			20	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN54S5	1		SN74S5	1	UNIT
PARAMETER		TEST COND	ITIONS †	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIK	$V_{CC} = MIN,$	lj = 18 mA				1.2			1.2	V
VOH	V _{CC} = MIN,	V _{IL} = 0.8 V,	I _{OH} = 1 mA	2.5	3.4		2.7	3.4		V
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 20 mA			0.5			0.5	V
ij .	V _{CC} = MAX,	V1 = 5.5 V				1			1	mA
Чн	V _{CC} = MAX,	V _I = 2.7 V				50			50	μA
հ	V _{CC} = MAX,	V1 = 0.5 V				-2			- 2	mA
IOS§	V _{CC} = MAX			- 40		- 100	- 40		- 100	mA
Іссн	V _{CC} = MAX,	V _I = 0 V			8.2	17,8		8.2	17.8	mA
ICCL	V _{CC} = MAX,	See Note 2			13.6	22		13.6	22	mA

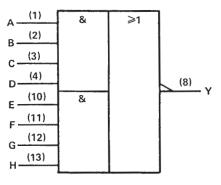
† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. § Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second. NOTE 2: All inputs of one AND gate at 4.5 V, all others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25° C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	DITIONS	MIN TYP	MAX	UNIT
t₽LH			D = 200 O	C ₁ = 15 pF	3.5	5.5	ns
tPHL			R _L = 280 Ω,	CL - 19 pr	3.5	5.5	ns
^t PLH	Any		R _I ≖ 280 Ω,	$C_{1} = 50 pF$	5		ns
^t PHL			n_ = 200 <i>32</i> ,		5.5		ns

SDLS181 – DECEMBER 1983 – REVISED MARCH 1988

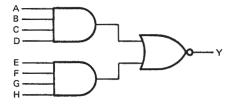

- Package Options Include "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

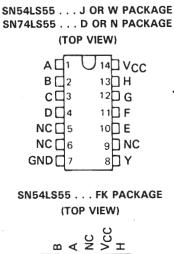
description

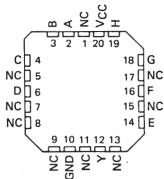
These devices contain 2-wide 4-input AND-OR-INVERT gates. They perform the Boolean function $Y = \overline{ABCD} + EFGH$.

The SN54LS55 is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74LS55 is characterized for operation from 0 °C to 70 °C.

logic symbol[†]

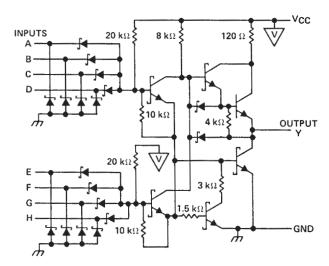



positive logic: $Y = \overline{ABCD + EFGH}$


[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

logic diagram



NC - No internal connection

schematic

Resistor values shown are nominal.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1988, Texas Instruments Incorporated

SN54LS55, SN74LS55 2-WIDE 4-INPUT AND-OR-INVERT GATES

SDLS181 - DECEMBER 1983 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note	1)	/
Input voltage		/
Operating free-air temperature:	SN54LS55	2
	SN74LS55 0°C to 70°C	С
Storage temperature range		С

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		5	SN54LS	55		UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
юн	High-level output current			- 0.4			- 0.4	mA
IOL	Low-level output current			4			8	mA
Τ _Α	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	l .	TEST CON		S	N54LS5	55	S	SN74LS	55	UNIT
TANAMETER			MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIK	V _{CC} = MIN,	l ₁ = – 18 mA				- 1.5			1.5	V
VOH	V _{CC} = MIN,	VIL=MAX,	I _{OH} = - 0.4 mA	2.5	3.4		2.7	3.4		V
Vol	$V_{CC} = MIN,$	V _{1H} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	
VOL	V _{CC} = MIN,	V _{IH} = 2 V,	IOL = 8 mA					0.35	0.5	V
1 ₁	VCC = MAX,	Vi = 7 V			-	0.1			0.1	mA
Чн	V _{CC} = MAX,	VI = 2.7 V				20			20	μA
ЧL	VCC = MAX,	VI = 0.4 V				0.4			- 0.4	mA
los§	VCC = MAX			- 20		- 100	- 20		- 100	mA
Іссн	VCC = MAX,	VI = 0 V			0.4	0.8		0.4	0.8	mA
ICCL	VCC = MAX,	See Note 2			0.7	1.3		0.7	1.3	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

NOTE 2: All outputs of one AND gate at 4.5 V, all others at GND.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIO	MIN	түр	МАХ	UNIT	
^t PLH	Any	Y	$R_1 = 2 k \Omega_s$; = 15 pF		12	20	ns
^t PHL	7 (11)		Π <u></u> - 2 καε, σ	-Le lo pr		12.5	20	ns

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

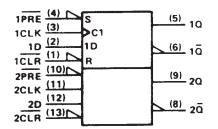
Copyright © 1999, Texas Instruments Incorporated

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 – DECEMBER 1983 – REVISED MARCH 1988

- Package Options Include Plastic "Small Outline" Packages, Ceramic Chip Carriers and Flat Packages, and Plastic and Ceramic DIPs
- Dependable Texas Instruments Quality and Reliability

description

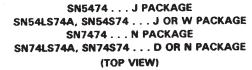
These devices contain two independent D-type positive-edge-triggered flip-flops. A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.


The SN54' family is characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74' family is characterized for operation from 0 °C to 70 °C.

FUNCTION TABLE

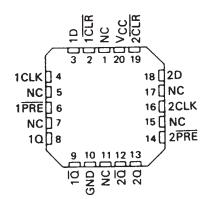
	INPUT	S		OUTP	UTS
PRE	CLR	CLK	D	۵	ā
L	н	×	Х	н	L
н	L	×	х	L	н
L	L	x	х	н†	Ht.
н	н	Ť	н	н	L
н	н	t	L	L	н
н	н	L	х	Q ₀ .	ā0

[†] The output levels in this configuration are not guaranteed to meet the minimum levels in V_{OH} if the lows at preset and clear are near V_{IL} maximum. Furthermore, this configuration is nonstable; that is, it will not persist when either preset or clear returns to its inactive (high) level.

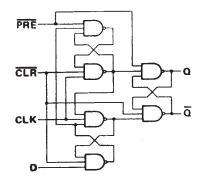

logic symbol[‡]

[‡]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

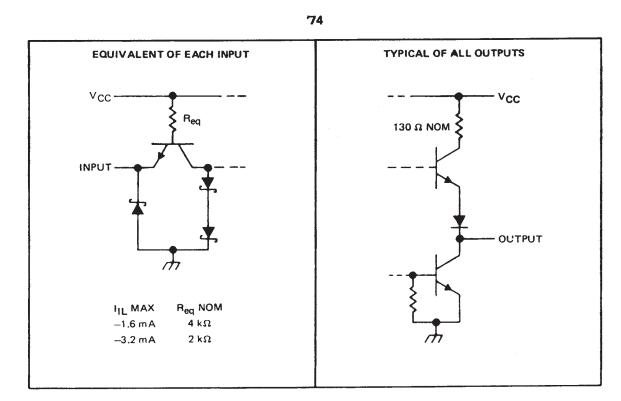
1D[]2	1322CLR
	12 2 0
	11]2CLK
10[5	10 2 2 PRE
1 <u>0</u> [6	9] 20
GND 7	8 20


SN5474	W P	ACKAGE
a	OP VIEV	N)
1CLK		
	2 1:	3010
1CLR	3 1:	2010
Vcc口	4 1	1 GND
2CLR	5 10	o ∏2 0
2D 🗋	6 9	20
2CLK	7 8	2PRE

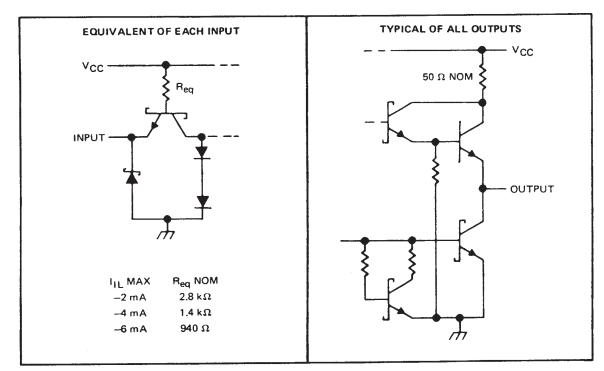
SN54LS74A, SN54S74 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram (positive logic)

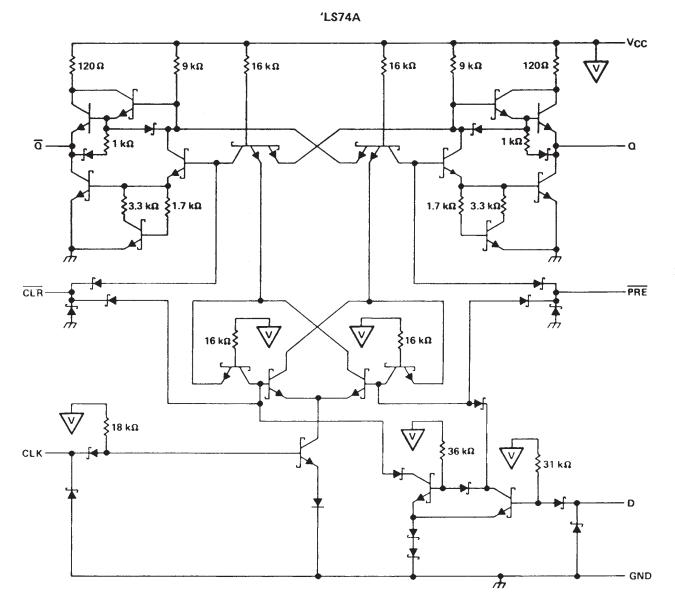

Copyright © 1988, Texas Instruments Incorporated

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265


SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

SDLS119 - DECEMBER 1983 - REVISED MARCH 1

schematics of inputs and outputs


'S74

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 – DECEMBER 1983 – REVISED MARCH 1988

schematic

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage: '74, 'S74	5.5 V
′LS74A	7 V
Operating free-air temperature range: SN54'	-55°C to 125°C
SN74′	0°C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 – DECEMBER 1983 – REVISED MARCH 1988

recommended operating conditions

				SN547	4		SN7474		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage			-	0.8			0.8	V
1 _{OH}	ligh-level output current			-	- 0.4			- 0.4	mA
10L	Low-level output current				16			16	mA
		CLK high	30			30			
tw	Pulse duration	CLK low	37			37			ns
••		PRE or CLR low	30			30			
t _{su}	Input setup time before CLK†		20			20			ns
th	Input hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature		- 55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				t		SN5474			SN7474		
PA	RAMETER	T	EST CONDITIO	NSI	MIN	TYP [‡]	MAX	MIN	түр‡	MAX	
VIK		V _{CC} = MIN,	$I_{1} = -12 mA$				- 1.5			- 1.5	V
VOH	· · · · · · · · · · · · · · · · · · ·	V _{CC} = MIN, I _{OH} = - 0.4 mA	V _{IH} = 2 V,	V _{IL} = 0.8 V,	2.4	3.4		2.4	3.4		v
VOL		V _{CC} = MIN, I _{OL} = 16 mA	V _{IH} = 2 V,	VIL = 0.8 V,		0.2	0.4		0.2	0.4	v
4		V _{CC} = MAX,	V ₁ = 5.5 V				1			1	mA
	D						40			40	
ЧH	ČLR	1					120			120	μΑ
	All Other	V _{CC} = MAX,	VI = 2.4 V				80			80	
	D						- 1.6			- 1.6	
	PRES	-					- 1.6			- 1.6	mA
ΗL	CLR 5	V _{CC} = MAX,	$V_1 = 0.4 V$				- 3.2	1		- 3.2	1
	CLK	1				d	- 3.2			- 3.2	
los1		V _{CC} = MAX			- 20		- 57	- 18		- 57	mA
ICC#		V _{CC} = MAX,	See Note 2			8.5	15		8.5	15	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

§Clear is tested with preset high and preset is tested with clear high.

Not more than one output should be shown at a time.

#Average per flip-flop.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

switching charateristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CON	TEST CONDITIONS				UNIT
f _{max}					15	25		MHz
^t PLH							25	ns
tPHL	PRE or CLR	Q or Q	R ₁ = 400 Ω,	$C_1 = 15 pF$			40	ns
				-		14	25	ns
<u>тргн</u> трнг	CLK	Q or \overline{Q}				20	40	ns

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR

SDLS119 - DECEMBER 1983 - REVISED MARCH 1988

recommended operating conditions

			St	154LS7	4A		SN74LS	74A	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.7			0.8	V
юн	High-level output current				- 0.4			- 0.4	mA
IOL	Low-level output current				4			8	mA
fclock	Clock frequency		0		25	0		25	MHz
		CLK high	25			25			ns
tw	Pulse duration	PRE or CLR low	25			25			115
		High-level data	20			20			ns
t _{su}	Setup time-before CLK 1	Low-level data	20			20			113
th	Hold time-data after CLK †		5			5			ns
TA	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SI	N54LS7	4A	SI	N74LS7	4A	UNIT
PA	RAMETER	TES	T CONDITIONS [†]		MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	- OINT
VIK		V _{CC} = MIN,	l _l = 18 mA				- 1.5			- 1.5	V
v _{он}		V _{CC} = MIN, I _{OH} = 0.4 mA	V _{IH} = 2 V,	V _{IL} = MAX,	2.5	3.4		2.7	3.4		v
		$V_{CC} = MIN,$ $I_{OL} = 4 mA$	VIL = MAX,	V _{IH} = 2 V,		0.25	0.4		0.25	0.4	v
VOL		V _{CC} = MIN, I _{OL} = 8 mA	V _{IL} = MAX,	V _{1H} = 2 V,					0.35	0.5	
	D or CLK		N 7 M				0.1			0.1	mA
ι _Γ	CLR or PRE	V _{CC} = MAX,	V1 = 7 V				0.2			0.2	112.
	D or CLK			a tata da a			20			20	μA
ЧН	CLR or PRE	V _{CC} = MAX,	V ₁ = 2.7 V				40			40	, <u>, , , , , , , , , , , , , , , , , , </u>
	D or CLK						- 0.4			- 0.4	mA
HL.	CLR or PRE	V _{CC} = MAX,	V ₁ = 0.4 V				- 0.8			- 0.8	
los§	•	V _{CC} = MAX,	See Note 4		- 20		- 100	- 20		- 100	mA
ICC (To	tal)	V _{CC} = MAX,	See Note 2			4	8		4	8	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

‡ All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

NOTE 4: For certain devices where state commutation can be caused by shorting an output to ground, an equivalent test may be performed with V_{O} = 2.25 V and 2.125 V for the 54 family and the 74 family, respectively, with the minimum and maximum limits reduced to one half of their stated values.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CO	MIN	ТҮР	MAX	UNIT	
fmax					25	33		MHz
^t PLH		Q or Q	$R_L = 2 k\Omega$,	C _L = 15 pF		13	25	ns
^t PHL	CLR, PRE or CLK	Q or Q				25	40	ns

SN5474, SN54LS74A, SN54S74 SN7474. SN74LS74A, SN74S74 DUAL D-TYPE POSITIVE-EDGE-TRIGGERED FLIP-FLOPS WITH PRESET AND CLEAR SDLS119 – DECEMBER 1983 – REVISED MARCH 1988

recommended operating conditions

				SN54S7	4		SN74S7	4	
			MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
ЮН	High-level output current				- 1			- 1	mA
IOL	Low-level output current				20			20	mA
		CLK high	6			6			1
tw	Pulse duration	CLK low	7.3			7.3			ns
		CLR or PRE low	7			7			
		High-level data	3			3			ns
t _{su}	Setup time, before CLK f	Low-level data	3			3			113
th	Input hold time - data after CLK †		2			2			ns
ТА	Operating free-air temperature		- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				*		SN54S74 SN74S74		4	UNIT		
PAR	RAMETER		TEST CONDITI	ONS	MIN	TYP [‡]	MAX	MIN	түр‡	MAX	UNIT
VIK		V _{CC} = MIN,	l _l = - 18 mA,				- 1.2			- 1.2	V
		V _{CC} = MIN,	V _{IH} = 2 V,	V _{1L} = 0.8 V,	2.5	3.4		2.7	3.4		V
v _{он}		1 _{OH} = − 1 mA			2.0	0.1					
VOL		V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0,5	1		0.5	V
VOL		I _{OL} = 20 mA									ļ
1 ₁		V _{CC} = MAX,	V _I = 5.5 V				1			1	mA
	D						50			50	1.
ЧН	ČLR	V _{CC} = MAX,	V _I = 2.7 V				150			150	μA
	PRE or CLK						100			100	
61-2-	D						- 2			- 2	
	CLR		V 0 5 V				- 6	Ĺ		- 6	mA
կլ	PRE	V _{CC} = MAX,	VI = 0.5 V				4			-4_	
	CLK						- 4			- 4	
loss		V _{CC} = MAX			- 40		- 100	- 40		- 100	mA
ICC#		V _{CC} = MAX,	See Note 2			15	25		15	25	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

IClear is tested with preset high and preset is tested with clear high.

#Average per flip-flop.

NOTE 2: With all outputs open, I_{CC} is measured with the Q and \overline{Q} outputs high in turn. At the time of measurement, the clock input is grounded.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see note 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDI	MIN	ТҮР	MAX	UNIT	
fmax					75	110		MHz
tPLH	PRE or CLR	Qorā				4	6	ns
T lev 11	PRE or CLR (CLK high)			0 15 -5		9	13.5	ns
^t PHL	PRE or CLR (CLK low)	a or a	R _L = 280 Ω,	CL = 15 pF		5	8	113
^t PLH						6	9	ns
tPHL	CLK	QorQ				6	9	ns

7-Jun-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
JM38510/00205BCA	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	Replaced by JM38510/07101BCA
JM38510/00205BDA	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI	Replaced by JM38510/07101BDA
JM38510/00205BDA	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI	Replaced by JM38510/07101BDA
JM38510/07101BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/07101BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/07101BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/07101BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30102B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
JM38510/30102B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
JM38510/30102BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30102BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30102BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30102BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30102SCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30102SCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30102SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30102SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	Replaced by SN54S74.
SN5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	Replaced by SN54S74.
SN54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN54S74J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN54S74J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN7474DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	Samples Not Available
SN7474DR	OBSOLETE	SOIC	D	14		TBD	Call TI	Call TI	Samples Not Available
SN7474N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	Samples Not Available
SN7474N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	Samples Not Available

7-Jun-2010

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN7474N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	Samples Not Available
SN7474N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	Samples Not Available
SN74LS74AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74LS74AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74LS74ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ADBRG4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ADBRG4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributo or Sales Office
SN74LS74ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributo or Sales Office
SN74LS74ADG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74LS74ADG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74LS74ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74LS74ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributor or Sales Office
SN74LS74ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributo or Sales Office
SN74LS74ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributo or Sales Office
SN74LS74ADRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributo or Sales Office

7-Jun-2010

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74LS74ADRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Contact TI Distributo or Sales Office
SN74LS74AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS74AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS74AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Contact TI Distributo or Sales Office
SN74LS74AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Contact TI Distributo or Sales Office
SN74LS74AN3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS74AN3	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS74ANE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Contact TI Distributo or Sales Office
SN74LS74ANE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Contact TI Distributo or Sales Office
SN74LS74ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS74ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74N	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples

7-Jun-2010

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74S74N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SN74S74N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	Samples Not Available
SN74S74N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	Samples Not Available
SN74S74NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SN74S74NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SN74S74NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S74NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SNJ5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	Replaced by SNJ54S74J
SNJ5474J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	Replaced by SNJ54S74J
SNJ5474W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI	Replaced by SNJ54S74W
SNJ5474W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI	Replaced by SNJ54S74W
SNJ54LS74AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
SNJ54LS74AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
SNJ54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54LS74AJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54LS74AW	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54LS74AW	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54S74FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
SNJ54S74FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
SNJ54S74J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54S74J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54S74W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54S74W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	Purchase Samples

7-Jun-2010

(1) The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
 PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
 OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN5474, SN54LS74A, SN54LS74A-SP, SN54S74, SN7474, SN74LS74A, SN74S74 :

Catalog: SN7474, SN74LS74A, SN54LS74A, SN74S74

Military: SN5474, SN54LS74A, SN54S74

• Space: SN54LS74A-SP

NOTE: Qualified Version Definitions:

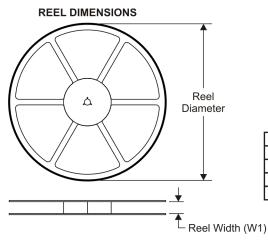
Catalog - TI's standard catalog product

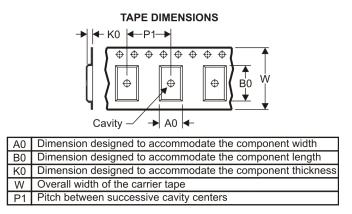
• Military - QML certified for Military and Defense Applications

PACKAGE OPTION ADDENDUM

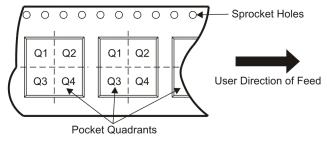
www.ti.com

7-Jun-2010


• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application

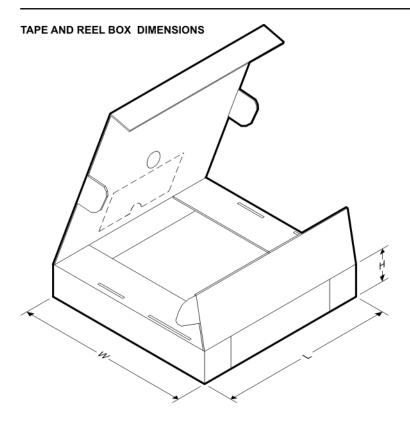

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS74ADBR	SSOP	DB	14	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
SN74LS74ADR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS74ANSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74S74NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

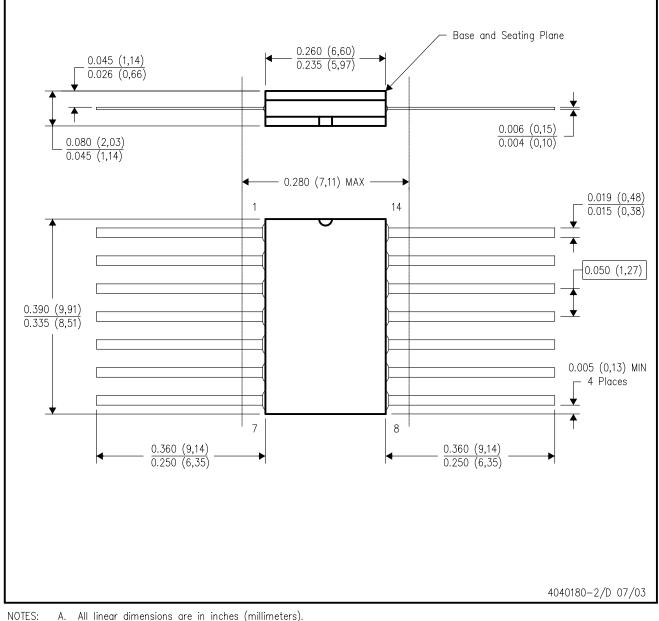
29-Jul-2009

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS74ADBR	SSOP	DB	14	2000	346.0	346.0	33.0
SN74LS74ADR	SOIC	D	14	2500	346.0	346.0	33.0
SN74LS74ANSR	SO	NS	14	2000	346.0	346.0	33.0
SN74S74NSR	SO	NS	14	2000	346.0	346.0	33.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

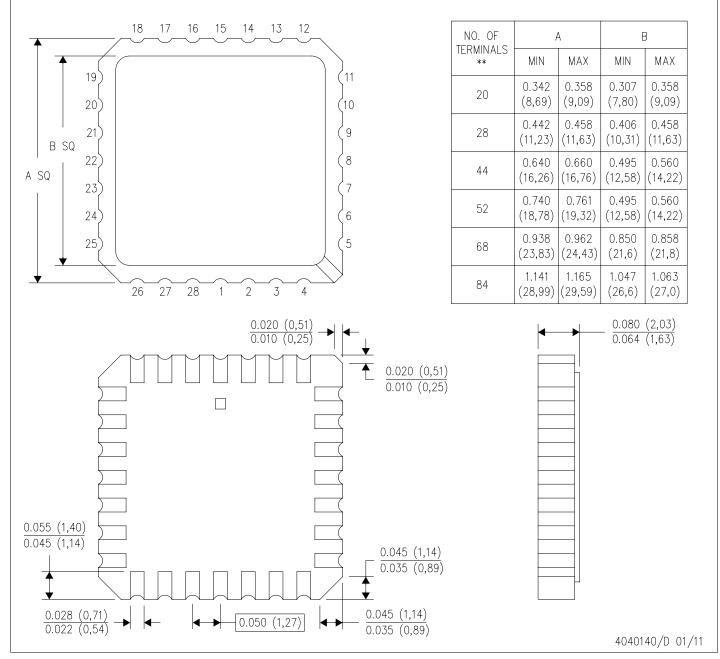


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

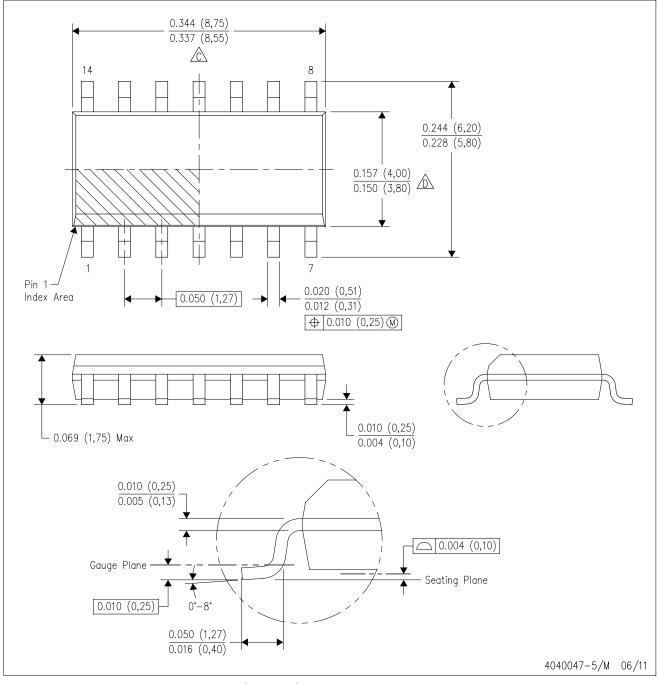
B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

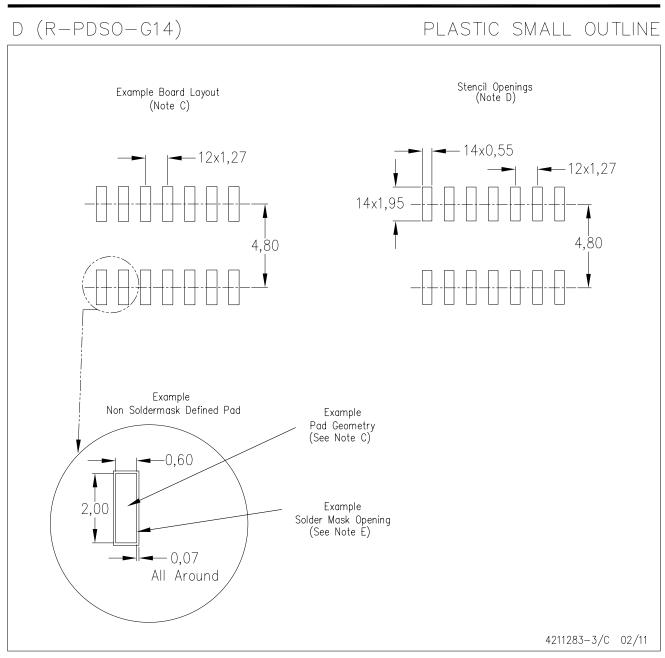
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

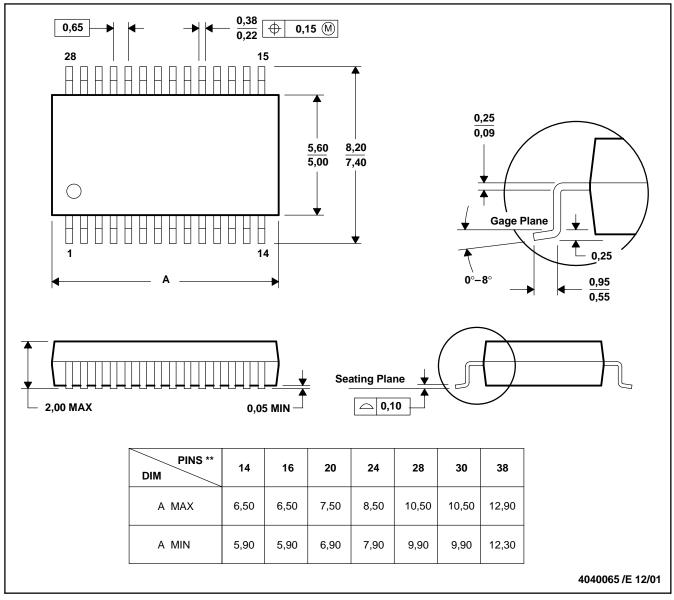
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

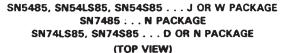
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

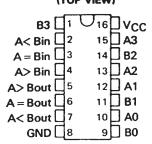
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

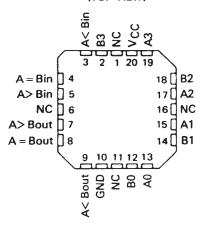
TI E2E Community Home Page

e2e.ti.com


Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated


SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS SDLS123 – MARCH 1974 – REVISED MARCH 1988

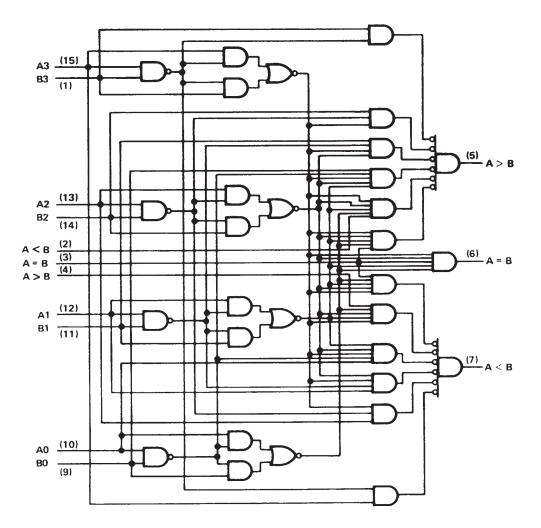
TYPE	TYPICAL POWER DISSIPATION	TYPICAL DELAY (4-BIT WORDS)
'85	275 mW	23 ns
LS85	52 mW	24 ns
' S85	365 mW	11 ns


description

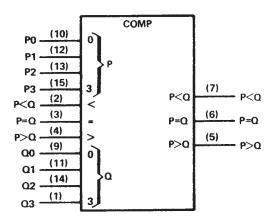
These four-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding A > B, A < B, and A = B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A = B input. The cascading paths of the '85, 'LS85, and 'S85 are implemented with only a two-gate-level delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data.

SN54LS85, SN54S85 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

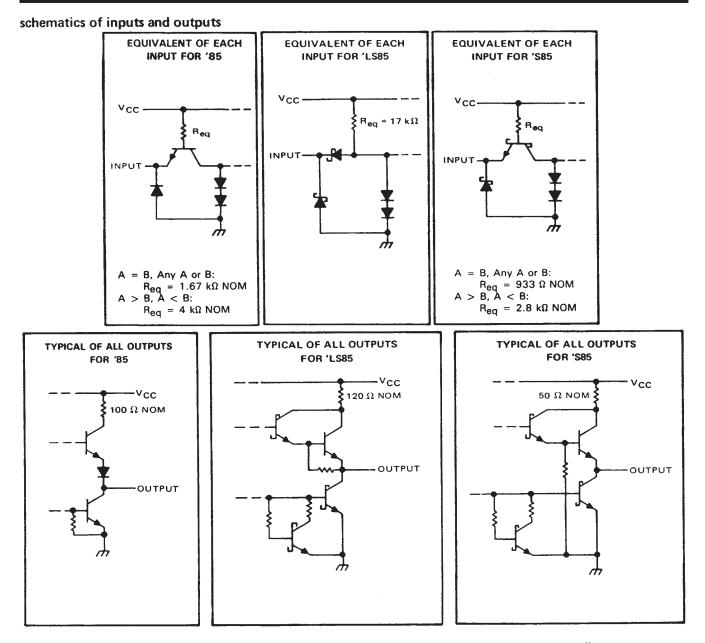

	COMP				CASCADING INPUTS				
A3, B3	A2, 82	A1, B1	A0, B0	A > B	A < B	A = B	A > 8	A < B	A = 8
A3 > B3	x	х	X	Х	х	X	н	L	Ĺ
A3 < B3	x	х	x	х	×	×	L	н	L
A3 = B3	A2 > B2	х	×	x	×	×	н	L	L
A3 = B3	A2 < B2	х	x	х	x	x	L	н	L
A3 = B2	A2 = B2	A1 > B1	x	х	x	×	н	L	L
A3 = B3	A2 = B2	A1 < 81	×	х	x	×	L	н	L
A2 = B3	A2 = B2	A1 = 81	A0 > B0	×	x	×	Ы	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < 80	x	x	x	L	н	L
A3 = B3	A2 = 82	A1 = B1	A0 = 80	н	ι	L	н	L	L
A3 = B3	A2 = B2	A1 = B1	AO = BO	L	н	L	L	н	L
A3 = B3	A2 = B2	A1 = B1	AO = BO	x	×	н	L	L	н
A3 = B3	A2 = B2	A1 = B1	AO = BO	н	н	L	L	L	L
A3 = 83	A2 = B2	A1 = B1	A0 = B0	L	L	L	н	Н	L

FUNCTION TABLE


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 **4-BIT MAGNITUDE COMPARATORS** SDLS123 – MARCH 1974 – REVISED MARCH 1988

logic diagrams (positive logic)



logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54' SN54S'	SN54LS' 7 7 5 to 125 5 to 150	SN74' SN74S'	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	7	7	V
Input voltage	5.5	7	5.5	7	V
Interemitter voltage (see Note 2)	5.5		5.5		V
Operating free-air temperature range	- 55	to 125	-0 to 70		°C
Storage temperature range	- 65	-65 to 150		to 150	°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies to each A input in conjunction with its respective B input of the '85 and 'S85.

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 **4-BIT MAGNITUDE COMPARATORS**

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

		SN5485			SN7485		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER			TEST CONDITIONS [†]			MIN	түр‡	MAX	UNIT
VIH	High-level input voltage						2			V
VIL	Low-level input voltage		1						0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,		l ₁ = −1	2 mA			-1.5	V
		V _{CC} = MIN,		V _{IH} = 2	2 V,	2.4	3.4		v	
Vон	High-level output voltage	V _{IL} = 0.8 V,		¹ OH = -400 μA		2.4	5.4		L V	
Ver Low level	Low-level output voltage	N-level outout voltage			V _{IH} = 2 V,			0.2	0,4	v
VOL			V _{IL} = 0.8 V,		1 _{OL} = 16 mA			0.2	0.4	ľ.
4	Input current at maximum input voltage		V _{CC} = MAX,		V _I = 5.5 V				1	mA
Чн	High-level input current $A < B, A > B$ in		V _{CC} ≓ MAX, V		V ₁ = 2.4 V				40	μА
'IH	righ-level input current	all other inputs	7°CC - MAA,		v] = 2.4 v				120	<u> </u>
1	Low-level input current	A < B, A > B inputs	Vac - MAX		¥ = 0.4 ¥				-1.6	mA
μL	Cowlevel input current	all other inputs	V _{CC} = MAX,		V ₁ = 0.4 V				-4.8	
100	Short-circuit output current	5	$V_{CC} = MAX, V_0 = 0$			SN5485	-20		-55	
los	Short-circuit output currents	j				SN7485	-18		-55	mA
1CC	Supply current		V _{CC} = MAX,	See Note 4				55	88	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

§Not more than one output should be shorted at a time.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER [¶]	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
			1		7		
		A < B, $A > B$	2]	12		ns
^t PLH	Any A or B data input		3		17	26	
		A = B	4		23	35	
	Any A or B data input	A < B, A > B	1	C _L = 15 pF,	11		
			2		15		ns
^t PHL			3		20	30	
		A = B	4	$R_{L} = 400 \ \Omega,$ See Note 5	20	30	
^t PLH	A < B or A = B	A > B	1	Jee Note J	7	11	ns
^t PHL	A < B or A = B	A > B	1		11	17	ns
^t PLH	A = 8	A = B	2		13	20	ns
^t PHL	A = B	A = B	2		11	17	ns
tPLH	A > B or A = B	A < B	1		7	11	ns
^t PHL	A > B or A = B	A < B	1	1	11	17	пѕ

\$ tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 **4-BIT MAGNITUDE COMPARATORS**

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

	S	SN54LS85			SN74LS85		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			t	S	N54LS8	15	SN74LS85			J	
		TEST CONDITIONS ^T		MIN	TYP [‡]	MAX	MIN	түр‡	MAX	UNIT	
VIH	VIH High-level input voltage			2			2			V	
VIL	Low-level input						0.7			0.7	V
VIK			V _{CC} = MIN,	lj = -18 mA			-1.5			-1.5	V
VOH	OH High-level output voltage			V _{1H} = 2 V, I _{OH} = -400 μA	2.5	3.4		2.7	3.4		v
	Low-level output voltage		V _{CC} = MIN,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL			V _{IH} = 2 V, V _{IL} = V _{IL} max	10L = 8 mA					0.35	0.5	Ľ
	Input current A < B, A > B inputs				0.1			0.1	mA		
4	at maximum input voltage	all other inputs	V _{CC} ≖ MAX,	V ₁ = 7 V			0.3			0.3	
	High-level	A < B, A > B inputs		N - 2 7 M			20			20	μΑ
ЧΗ	input current	all other inputs	V _{CC} = MAX,	V _I = 2.7 V			60			60	
	Low-level	A < B, A > B inputs		V 0 4 V			-0.4			-0.4	mA
ЧL	input current	all other inputs	V _{CC} = MAX, V ₁	V ₁ = 0.4 V			-1.2			-1.2	1
los	Short-circuit ou	tput current §	V _{CC} = MAX		-20		-100	-20		-100	mA
1cc	Supply current		V _{CC} = MAX,	See Note 4		10.4	20		10.4	20	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

DADAMETED!	FROM	то	NUMBER OF	TEST CONDITIONS	MIN	түр	MAX	UNIT	
PARAMETER¶	INPUT	OUTPUT	GATE LEVELS	TEST CONDITIONS	1				
			1			14		1	
		A < B, A > B	2			19		ns	
^t PLH	Any A or B data input		3			24	36		
		A = B	4			27	45		
	Any A or B data input	A < B, A > 8	1	$C_L = 15 pF,$ $R_L = 2 k\Omega,$		11			
			2			15		ns	
^t PHL			3			20	30		
		A = B	4			23	45		
tPLH	A < B or A = B	A > B	1	See Note 5		14	22	ns	
^t PHL	A < B or A = B	A > B	1	1		11	17	ns	
TPLH	A = 8	A = B	2			13	20	ns	
^t PHL	A = B	A = B	2			13	26	ns	
tPLH	A > B or A = B	A < B	1	1		14	22	ns	
^t PHL	A > B or $A = B$	A < B	1	1		11	17	ns	

 \P_{tPLH} = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

		SN54S8	5		SN74S8	5	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETE	R	TES	TCONDITIONS	t.	MIN	түр‡	MAX	UNIT
VIH	High-level input voltage					2			V
VIL	Low-level input voltage							0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	l1 = -18 mA				-1.2	V
			V _{CC} = MIN,	V _{IH} = 2 V,	SN54S85	2.5	3.4		v
VOH	High-level output voltage		V _{IL} = 0.8 V,	^I OH = -1 mA	SN74S85	2.7	3.4		v
			V _{CC} = MIN,	VIH = 2 V,				0.5	v
VOL	Low-level output voltage		V _{IL} = 0.8 V,	1 _{OL} = 20 mA				0.5	
1	Input current at maximum inp	ut voltage	VCC = MAX,	V ₁ = 5.5 V				1	mA
		A < B, A > B inputs	Vcc = MAX	$\lambda = 27 \lambda$				50	μА
ΗH	High-level input current	all other inputs		vi - 2.7 v				150	, marca
	• • • • • • • • • • • • • • • • • • •	A < B, A > B inputs	Vcc = MAX,	$V_{c} = 0.5 V$				-2	mA
41	Low-level input current	all other inputs	VCC - MAA,	vi - 0.5 v				6	
los	Short-circuit output current §		V _{CC} = MAX			-40		-100	mA
			V _{CC} = MAX,	See Note 4			73	115	
ICC	Supply current		V _{CC} = MAX, See Note 4	T _A = 125°C,	SN54S85W			110	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

SNot more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER¶	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
			1		5		
		A < B, A > B	2		7.5		ns
^t PLH	Any A or B data input		3		10.5	16] "`
		A = B	4		12	18	
			1		5.5		
		A < B, A > B	2	0 15 . 5	7		ns
^t PHL	Any A or B data input		3	С _L = 15 рF,	11	16.5	113
		A = B	4	RL = 280 Ω, See Note 5	11	16.5	
^t PLH	A < B or A = B	A > B	1	See Note 5	5	7.5	ns
tPHL	A < B or A = B	A > B	1		5.5	8.5	ns
^t PLH	A = B	A = B	2		7	10.5	ns
^t PHL	A = 8	A = B	2		5	7.5	ns
tPLH	A > B or A = B	A < 8	1	1	5	7.5	ns
tPHL	A > B or A = B	A < B	1	1	5.5	8.5	ns

¶tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

TYPICAL APPLICATION DATA

INPUTS

A23

B22

A22

B21

A21

(MSB) B23

B3

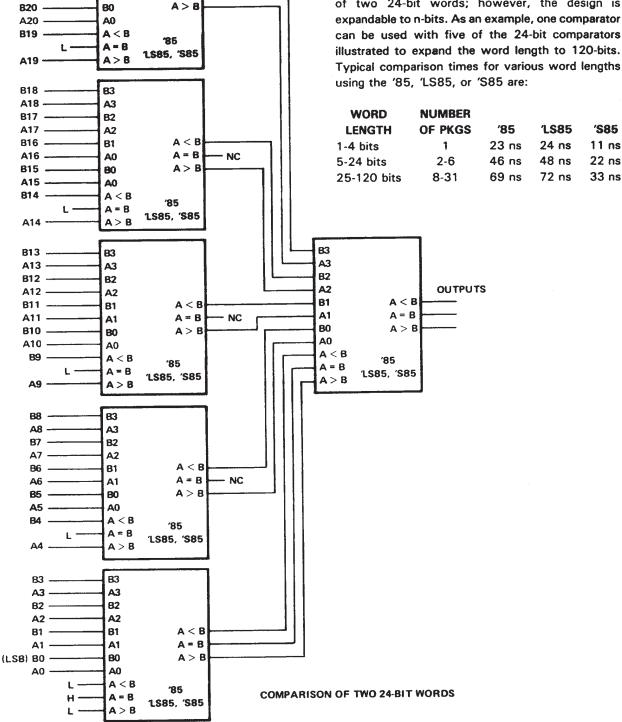
A3

82

A2

81

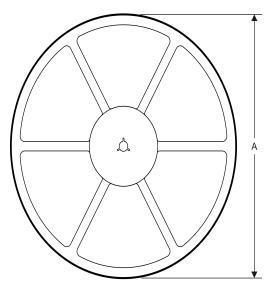
A1


A < 8

A = 8

NC

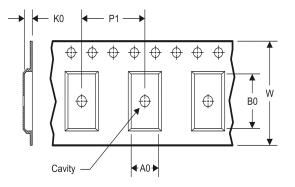
This application demonstrates how these magnitude comparators can be cascaded to compare longer words. The example illustrated shows the comparison of two 24-bit words; however, the design is expandable to n-bits. As an example, one comparator can be used with five of the 24-bit comparators illustrated to expand the word length to 120-bits. Typical comparison times for various word lengths using the '85, 'LS85, or 'S85 are:


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

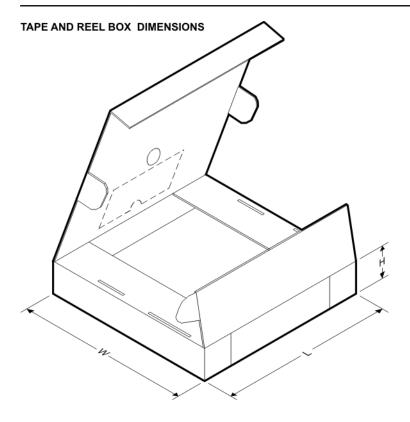
REEL DIMENSIONS


Texas Instruments

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS85DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS85NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS85DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS85NSR	SO	NS	16	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

SN5486, SN54LS86A, SN54S86 SN7486, SN74LS86A, SN74S86 **QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES** SDLS124 - DECEMBER 1972 - REVISED MARCH 1988

SN5486, SN54LS86A, SN54S86 . . . J OR W PACKAGE SN7486 . . . N PACKAGE

SN74LS86A, SN74S86 . . . D OR N PACKAGE

(TOP VIEW)

140 VCC

13 4B

12 4A

11] 4Y

10 3B

1Y 🛛 3 2A 🛛 4

₫5 2B

1B

- Package Options Include Plastic "Small **Outline'' Packages, Ceramic Chip Carriers** and Flat Packages, and Standard Plastic and Ceramic 300-mil DIPs
- **Dependable Texas Instruments Quality and** Reliability

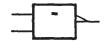
	TYPICAL AVERAGE	TYPICAL
TYPE	PROPAGATION	TOTAL POWER
	DELAY TIME	DISSIPATION
'86	14 ns	150 mW
'LS86A	10 ns	30.5 mW
'S86	7 ns	250 mW

description

These devices contain four independent 2-input Exclusive-OR gates. They perform the Boolean functions $Y = A \oplus B = \overline{A}B + A\overline{B}$ in positive logic.

A common application is as a true/complement element. If one of the inputs is low, the other input will be reproduced in true form at the output. If one of the inputs is high, the signal on the other input will be reproduced inverted at the output.

The SN5486, 54LS86A, and the SN54S86 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN7486, SN74LS86A, and the SN74S86 are characterized for operation from 0°C to 70°C.


exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

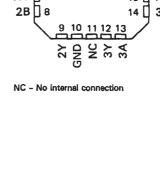
These are five equivalent Exclusive-OR symbols valid for an '86 or 'LS86A gate in positive logic; negation may be shown at any two ports.

LOGIC IDENTITY ELEMENT

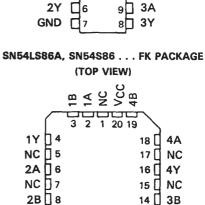
The output is active (low) if all inputs stand at the same logic level (i.e., $A \approx B$).

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

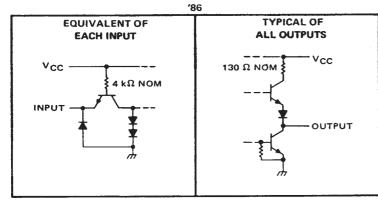
ODD-PARITY ELEMENT



The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.


PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

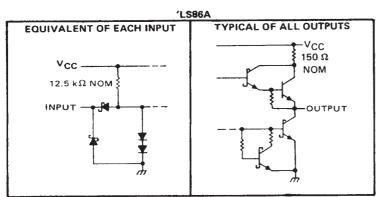
Copyright © 1988, Texas Instruments Incorporated

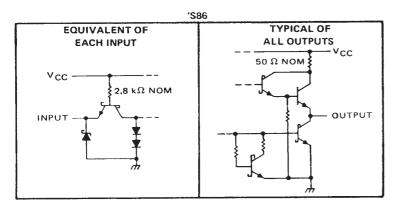

(TOP VIEW)


1

SN5486, SN54LS86A, SN54S86 SN7486, SN74LS86A, SN74S86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES SDLS124 – DECEMBER 1972 – REVISED MARCH 1988

schematics of inputs and outputs




logic symbol[†]

[†]This symbol is in accordance with

ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

FUNCTION TABLE

INP	UTS	OUTPUT
Α	В	Y
L	L	L
L	н	н
н	L	н
н	н	L

H = high level, L = low level

SN5486, SN54LS86A, SN54S86 SN7486, SN74LS86A, SN74S86 **QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES** SDLS124 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)													7	v
Input voltage														
Operating free-air temperature range: SN5486						•					-55°	'C to	125	°C
SN7486											. ()°C 1	o 70	°C
Storage temperature range											-65°	'C to	150	°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN548	5		SN748	6	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μA
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]		SN5486	6		SN7486	3	UNIT
	PARAMETER	TEST CONDITIONS:	MIN	ΤΥΡ‡	MAX	MIN	TYP‡	MAX	
ViH	High-level input voltage		2			2			v
VIL	Low-level input voltage				0.8			0.8	V
VIK	Input clamp voltage	$V_{CC} = MIN$, $I_1 = -8 mA$			-1.5			-1.5	V
		$V_{CC} = MIN, V_{IH} = 2V,$	2.4	3.4		2.4	3.4		V
∨он	High-level output voltage	V _{IL} = 0.8 V, I _{OH} = -800 µ A	2.4	3.4		2.4	3.4		ľ
Maria		V _{CC} = MIN, V _{IH} = 2 V		0.2	0.4		0.2	0.4	v
VOL	Low-level output voltage	V _{1L} = 0.8 V, 1 _{OL} = 16 mA		0.2	0.4		0.2	0.4	Ň
4	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1	1		1	mA
1 _{IH}	High-level input current	V _{CC} = MAX, V ₁ = 2.4 V	1		40			40	μA
1 _L	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current §	V _{CC} = MAX	20		-55	-18		-55	mA
1CC	Supply current	V _{CC} = MAX, See Note 2		30	43		30	50	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. [‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

SNot more than one output should be shorted at a time.

NOTE 2: I_{CC} is measured with the inputs grounded and the outputs open.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER®	FROM (INPUT)	TEST COM	TEST CONDITIONS		түр	мах	UNIT	
tPLH	A or B	Other input low	$C_1 = 15 \text{ oF}$		15	23	ns	
^t PHL		Other input low	CL = 15 pF, RL = 400 Ω,		11	17		
tPLH	A or B	Other insut high	See Note 3			18	30	ns
tPHL	A or B Other input h		See NOTE 5		13	22		

¶tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

SN5486, SN54LS86A, SN54S86 SN7486, SN74LS86A, SN74S86 QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES SDLS124 – DECEMBER 1972 – REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	V
Input voltage	V
Operating free-air temperature range: SN54LS86A	С
SN74LS86A	С
Storage temperature range	С

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	S	SN54LS86A			SN74LS86A			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH			-400			-400	μA	
Low-level output current, IOL			4	Ī		8	mA	
Operating free-air temperature, TA	-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			upurioust	SN54LS86A		SM	6A			
		TEST CONDITIONS [†]		MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage			2			2			V V
VIL	Low-level input voltage					0.7			0.8	V
VIK	Input clamp voltage	V _{CC} ≈ MIN,	li = -18 mA			-1.5	1		-1.5	V
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V, , I _{OH} = -400 μA	2.5	3.4		2.7	3.4		v
		$V_{CC} = MIN,$ $V_{IH} = 2V,$	10L = 4 mA		0.25	0.4		0.25	0.4	
VOL	Low-level output voltage	$V_{IL} = V_{IL}$ max	1 _{OL} = 8 mA					0.35	0.5	ľ
1	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V	T		0.2			0.2	mA
ЧН	High-level input current	V _{CC} = MAX,	V _I = 2.7 V	1		40			40	μA
IIL.	Low-level input current	V _{CC} = MAX,	V1 = 0.4 V			-0.8			-0.8	mA
los	Short-circuit output current §	V _{CC} = MAX		- 20		- 100	- 20		- 100	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2	1	6.1	10		6.1	10	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. [‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

SNot more than one output should be shorted at a time.

NOTE 2: I_{CC} is measured with the inputs grounded and the outputs open.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER¶	FROM (INPUT)	TEST CON	TEST CONDITIONS		ТҮР	MAX	UNIT
tPLH	A or B	Other input low	$C_{1} = 15 \text{pE}$		12	23	ns
tPHL	AOrb	Other input low	$C_{L} = 15 pF$,		10	17	
tPLH	A or B	Other input high	RL = 2 kQ, See Note 3		20	30	ns
tPHL	AUP	Other input high	366 14016 3	1	13	22	

 $\P_{tp_{LH}}$ = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

SN5486, SN54LS86A, SN54S86 SN7486, SN74LS86A, SN74S86 **QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES** SDLS124 - DECEMBER 1972 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	,
Inout voltage	1
Operating free-air temperature range: SN54S86	2
SN74S86	2
Storage temperature range	;

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54S86			SN74S86		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TCCT CONDUTIONIST	1	SN54S8	6		6	UNIT	
PARAMETER		TEST CONDITIONS [†]	MIN	ΤΥΡ ‡	MAX	MIN	TYP‡		MAX
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I ₁ =18 mA			-1.2			-1.2	V
VOH	High-level output voltage	$V_{CC} = MIN, V_{1H} = 2 V,$ $V_{1L} = 0.8 V, I_{OH} = -1 mA$	2.5	3.4		2.7	3.4		v
V _{OL}	Low-level output voltage	$V_{CC} = MIN, V_{IH} = 2 V$ $V_{IL} = 0.8 V, I_{OL} = 20 mA$			0.5			0.5	v
4	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
Чн	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V			50			50	μA
11	Low-level input current	V _{CC} = MAX, V _I = 0.5 V			-2	1		-2	mA
los	Short-circuit output current §	V _{CC} = MAX	-40		-100	-40	_	-100	mA
	Supply current	V _{CC} = MAX, See Note 2		50	75		50	75	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. ‡All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

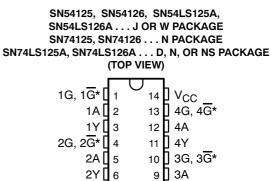
NOTE 2: ICC is measured with the inputs grounded and the outputs open.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TEST CONDITIONS		MIN	түр	MAX	UNIT	
tPLH	A or B	Other input low	C ₁ = 15 pF,		7	10.5	ns	
^t PHL	A 01 B	Other input low	-		6.5	10		
^t ዮLH	A or B			R _L = 280 Ω, See Note 3		7	10.5	ns
^t PHL	AUD	Other input night			6.5	10		

1_{tpLH} = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

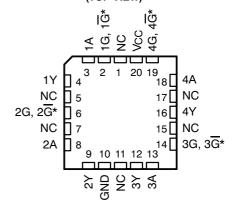

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

- Quad Bus Buffers
- 3-State Outputs
- Separate Control for Each Channel

description

These bus buffers feature three-state outputs that, when enabled, have the low impedance characteristics of a TTL output with additional drive capability at high logic levels to permit driving heavily loaded bus lines without external pullup resistors. When disabled, both output transistors are turned off, presenting a high-impedance state to the bus so the output will act neither as a significant load nor as a driver. The '125 and 'LS125A devices' outputs are disabled when \overline{G} is high. The '126 and 'LS126A devices' outputs are disabled when G is low.

SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS SDLS044A – DECEMBER 1983 – REVISED MARCH 2002



8 3Y

*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices

GND 7

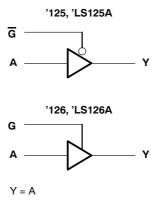
SN54LS125A, SN54LS126A . . . FK PACKAGE (TOP VIEW)

*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices NC – No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright \circledcirc 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

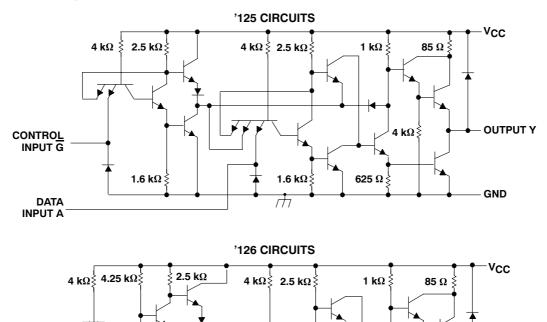

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

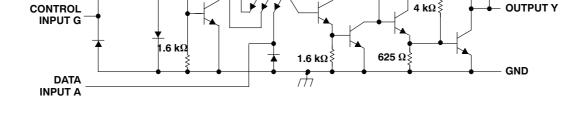
T _A PACH		KAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING					
	PDIP – N	Tube	SN74LS125AN	SN74LS125AN					
	PDIP - N	Tube	SN74LS126AN	SN74LS126AN					
		Tube	SN74LS125AD	1.0105.4					
0°C to 70°C	SOIC – D	Tape and reel	SN74LS125ADR	LS125A					
	SOIC - D	Tube	SN74LS126AD	1.01004					
		Tape and reel	SN74LS126ADR	LS126A					
	SOP – NS	Tape and reel	SN74LS125ANSR	74LS125A					
	30F - N3	Tape and reel	SN74LS126ANSR	74LS126A					
	CDIP – J	Tube	SN54LS125AJ	SN54LS125AJ					
	CDIF – J	Tube	SNJ54LS125AJ	SNJ54LS125AJ					
–55°C to 125°C	CFP – W	Tube	SNJ54LS125AW	SNJ54LS125AW					
	LCCC – FK	Tube	SNJ54LS125AFK	SNJ54LS125AFK					

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

logic diagram (each gate)





The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

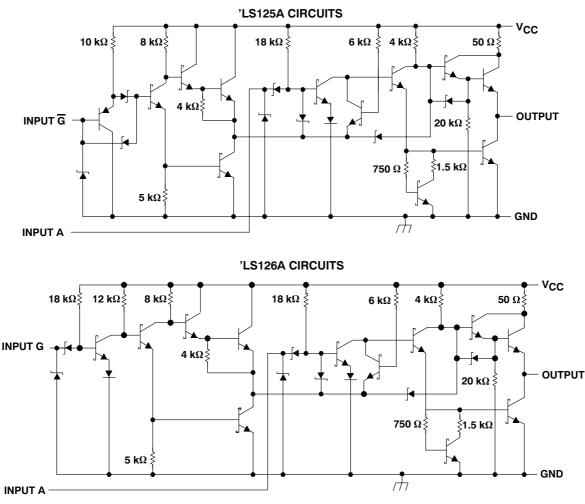
SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS SDLS044A – DECEMBER 1983 – REVISED MARCH 2002

schematics (each gate)

absolute maximum ratings over operating free-air temperature (unless otherwise noted) † ('125 and '126)

Supply voltage, V _{CC} (see Note 1)	V
Input voltage, VI	V
Package thermal impedance, θ _{JA} (see Note 2): N package	W
Storage temperature range, T _{stg}	,C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.


NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package termal impedance is calculated in accordance with JESD 51-7.

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) † ('LS125A and 'LS126A)

Supply voltage, V _{CC} (see Note 1) Input voltage, V _I	
Package thermal impedance, θ_{IA} (see Note 2): D package	
N package	80°C/W
NS package	
Storage temperature range, T _{stg}	\dots –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package termal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			SN54125 SN54126			SN74125 SN74126		
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-2			-5.2	mA
IOL	Low-level output current			16			16	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			SN54125 SN54126				UNIT		
				MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	
VIK	V _{CC} = MIN,	lj = -12 mA				-1.5			-1.5	V
Vou	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} = -2 mA	2.4	3.3					v
VOH	VIL = 0.8 V		I _{OH} = -5.2 mA				2.4	3.1		v
Ve	V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	v
V _{OL}	I _{OL} = 16 mA					0.4			0.4	v
	$V_{CC} = MAX$	V _{IH} = 2 V,	V _O = 2.4 V			40			40	
loz	V _{IL} = 0.8 V		V _O = 0.4 V			-40			-40	μA
Ц	V _{CC} = MAX,	VI = 6.5 V				1			1	mA
Чн	V _{CC} = MAX,	V _I = 2.4 V				40			40	μA
۱ _{IL}	V _{CC} = MAX,	VI = 0.4 V				-1.6			-1.6	mA
I _{OS} §	V _{CC} = MAX			-30		-70	-28		-70	mA
laa	V _{CC} = MAX		'125		32	54		32	54	
ICC	(see Note 3)		'126		36	62		36	62	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

§ Not more than one output should be shorted at a time.

NOTE 3: Data inputs = 0 V; output control = 4.5 V for '125 and 0 V for '126.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	TEST CON	IDITIONS	SN54125 SN74125			S S	UNIT		
			MIN	TYP	MAX	MIN	TYP	MAX	
^t PLH	R _I = 400 Ω,	C _L = 50 pF		8	13		8	13	ns
^t PHL	η <u></u> - 400 s2,	C Sopi		12	18		12	18	115
^t PZH	R _I = 400 Ω,	C _I = 50 pF		11	17		11	18	ns
^t PZL	Π <u></u> = 400 s2,	0L = 30 bi		16	25		16	25	115
^t PHZ	R _I = 400 Ω,	CI = 5 pF		5	8		10	16	ns
^t PLZ	ιτ <u></u> = 300 32,	0 <u> </u>		7	12		12	18	113

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

recommended operating conditions

		-	54LS129 54LS126			SN74LS125A SN74LS126A		
		MIN	NOM	MAX	MIN	NOM	MAX	
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current			-1			-2.6	mA
IOL	Low-level output current			12			24	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

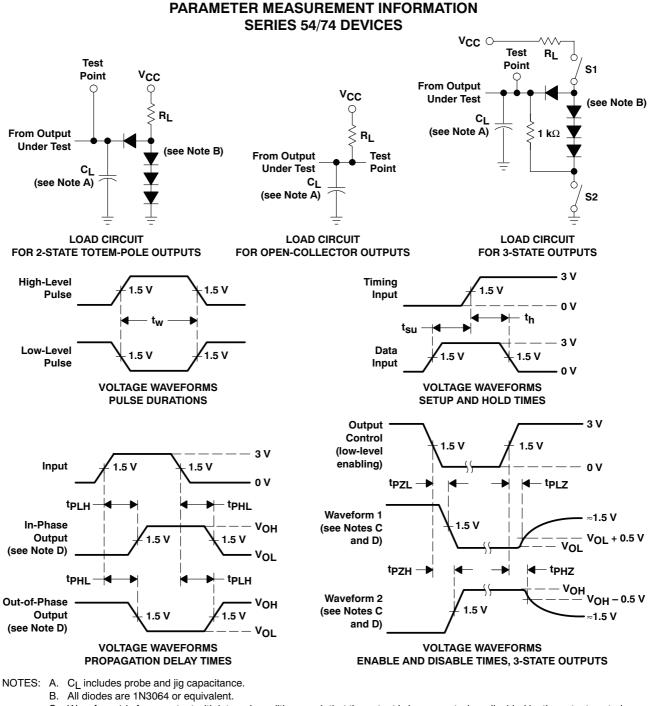
PARAMETER		TEST CONDITIO	NS [†]	-	54LS12	-	SN SN		UNIT	
				MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	
VIK	$V_{CC} = MIN,$	lj = -18 mA				-1.5			-1.5	V
Maria	V _{CC} = MIN,	V _{IL} = 0.7 V,	I _{OH} = -1 mA	2.4						v
VOH	V _{IH} = 2 V	V _{IL} = 0.8 V	I _{OH} = -2.6 mA				2.4			v
		V _{IL} = 0.7 V,	I _{OL} = 12 mA		0.25	0.4				
VOL	V _{CC} = MIN, V _{IH} = 2 V	V _{IL} = 0.8 V,	I _{OL} = 12 mA					0.25	0.4	V
	VIH - 2 V	V _{IL} = 0.8 V,	I _{OL} = 24 mA					0.35	0.5	
)//·· 07)/	V _O = 2.4 V			20				
	V _{CC} = MAX,	VIL = 0.7 V	V _O = 0.4 V			-20				
IOZ	V _{IH} = 2 V,		V _O = 2.4 V						20	μA
		VIL = 0.8 V	V _O = 0.4 V						-20	
lj	V _{CC} = MAX,	VI = 7 V				0.1			0.1	mA
Iн	V _{CC} = MAX,	VI = 2.7 V				20			20	μA
	V _{CC} = MAX,	'LS125A-G inpu	ıts			-0.2			-0.2	mA
ΙL	V _I = 0.4 V	'LS125A-A inpu	ts; 'LS126A All inputs			-0.4			-0.4	mA
los§	V _{CC} = MAX			-40		-225	-40		-225	mA
	V _{CC} = MAX		'LS125A		11	20		11	20	mA
ICC	(see Note 4)		'LS126A		12	22		12	22	ШA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, $T_A = 25^{\circ}$ C. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 4: Data inputs = 0 V; output control = 4.5 V for 'LS125A and 0 V for 'LS126A.

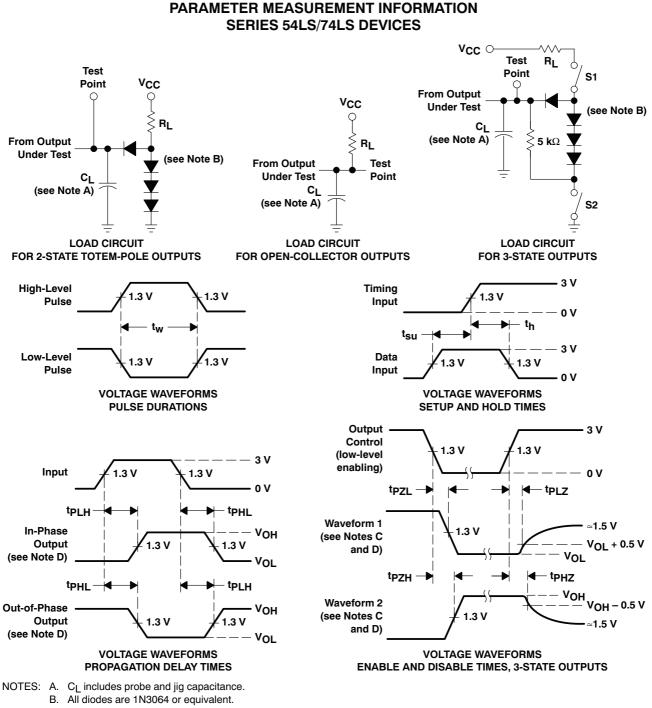
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see Figure 1)


PARAMETER	TEST CON	TEST CONDITIONS			5A 5A	SN: SN:		UNIT	
			MIN	ТҮР	MAX	MIN	ТҮР	MAX	
^t PLH	R _I = 667 Ω,	Cl = 45 pF		9	15		9	15	ns
^t PHL	Π <u></u> = 007 32,	0L - 40 bi		7	18		8	18	115
^t PZH	$R_1 = 667 \Omega_1$	C _L = 45 pF		12	20		16	25	ns
^t PZL	Π <u></u> = 007 32,	0L - 40 bi		15	25		21	35	115
^t PHZ	R _I = 667 Ω,	C1 = 5 pF			20			25	ns
^t PLZ	Π <u></u> = 007 32,	0 <u> </u>			20			25	110

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS

SDLS044A – DECEMBER 1983 – REVISED MARCH 2002



- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 E. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO ≈ 50 Ω; t_f and t_f ≤ 7 ns for Series 54/74 devices and t_f and t_f ≤ 2.5 ns for Series 54/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL.
- E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
- F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω , t_f \leq 1.5 ns, t_f \leq 2.6 ns.
- G. The outputs are measured one at a time with one input transition per measurement.

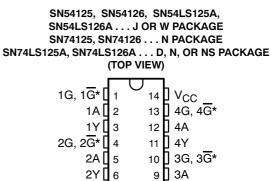
Figure 2. Load Circuits and Voltage Waveforms

PACKAGE OPTION ADDENDUM

26-Sep-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
JM38510/32301B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301SCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301SDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SN54126J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN54LS125AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN74125N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74125N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74126N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS125AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS125AN3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS125ANE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS125ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ANSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS126AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS126ANE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS126ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

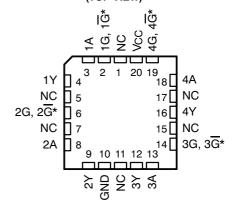

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

- Quad Bus Buffers
- 3-State Outputs
- Separate Control for Each Channel

description

These bus buffers feature three-state outputs that, when enabled, have the low impedance characteristics of a TTL output with additional drive capability at high logic levels to permit driving heavily loaded bus lines without external pullup resistors. When disabled, both output transistors are turned off, presenting a high-impedance state to the bus so the output will act neither as a significant load nor as a driver. The '125 and 'LS125A devices' outputs are disabled when \overline{G} is high. The '126 and 'LS126A devices' outputs are disabled when G is low.

SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS SDLS044A – DECEMBER 1983 – REVISED MARCH 2002



8 3Y

*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices

GND 7

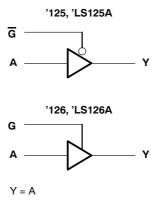
SN54LS125A, SN54LS126A . . . FK PACKAGE (TOP VIEW)

*G on '125 and 'LS125A devices; G on 126 and 'LS126A devices NC – No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright \circledcirc 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

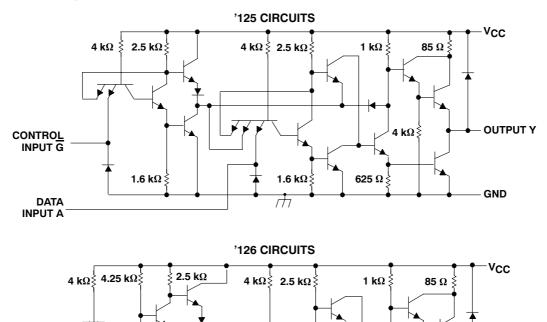

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

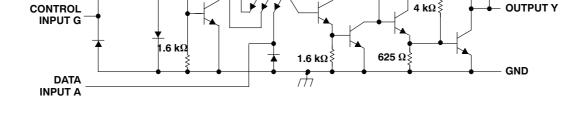
			•••••••	
TA	PACI	KAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – N	Tube	SN74LS125AN	SN74LS125AN
	PDIP - N	Tube	SN74LS126AN	SN74LS126AN
0°C to 70°C		Tube	SN74LS125AD	1.0105.4
	SOIC – D	Tape and reel	SN74LS125ADR	LS125A
	50IC - D	Tube	SN74LS126AD	1.01004
		Tape and reel	SN74LS126ADR	LS126A
	SOP – NS	Tape and reel	SN74LS125ANSR	74LS125A
	30F - N3	Tape and reel	SN74LS126ANSR	74LS126A
	CDIP – J	Tube	SN54LS125AJ	SN54LS125AJ
	CDIF – J	Tube	SNJ54LS125AJ	SNJ54LS125AJ
–55°C to 125°C	CFP – W	Tube	SNJ54LS125AW	SNJ54LS125AW
	LCCC – FK	Tube	SNJ54LS125AFK	SNJ54LS125AFK

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

logic diagram (each gate)





The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

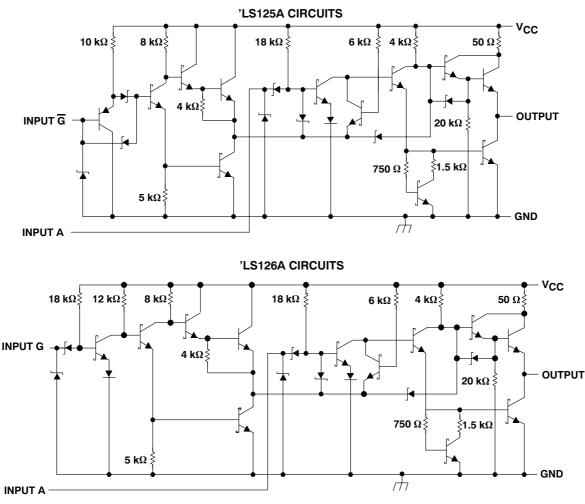
SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS SDLS044A – DECEMBER 1983 – REVISED MARCH 2002

schematics (each gate)

absolute maximum ratings over operating free-air temperature (unless otherwise noted) † ('125 and '126)

Supply voltage, V _{CC} (see Note 1)	V
Input voltage, VI	V
Package thermal impedance, θ _{JA} (see Note 2): N package	W
Storage temperature range, T _{stg}	,C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.


NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package termal impedance is calculated in accordance with JESD 51-7.

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

schematics (each gate)

Resistor values shown are nominal.

absolute maximum ratings over operating free-air temperature (unless otherwise noted) † ('LS125A and 'LS126A)

Supply voltage, V _{CC} (see Note 1) Input voltage, V _I	
Package thermal impedance, θ_{IA} (see Note 2): D package	
N package	80°C/W
NS package	
Storage temperature range, T _{stg}	\dots –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Voltage values are with respect to network ground terminal.

2. The package termal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			SN54125 SN54126			SN74125 SN74126		
		MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
ЮН	High-level output current			-2			-5.2	mA
IOL	Low-level output current			16			16	mA
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			SN54125 SN54126				UNIT		
				MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	
VIK	V _{CC} = MIN,	lj = -12 mA				-1.5			-1.5	V
Vou	V _{CC} = MIN,	V _{IH} = 2 V,	I _{OH} = -2 mA	2.4	3.3					v
VOH	VIL = 0.8 V		I _{OH} = -5.2 mA				2.4	3.1		v
Ve	V _{CC} = MIN,	V _{IH} = 2 V,	V _{IL} = 0.8 V,			0.4			0.4	v
V _{OL}	I _{OL} = 16 mA					0.4			0.4	v
	$V_{CC} = MAX$	V _{IH} = 2 V,	V _O = 2.4 V			40			40	
loz	V _{IL} = 0.8 V		V _O = 0.4 V			-40			-40	μA
Ц	V _{CC} = MAX,	VI = 6.5 V				1			1	mA
Чн	V _{CC} = MAX,	V _I = 2.4 V				40			40	μA
۱ _{IL}	V _{CC} = MAX,	VI = 0.4 V				-1.6			-1.6	mA
I _{OS} §	V _{CC} = MAX			-30		-70	-28		-70	mA
laa	V _{CC} = MAX		'125		32	54		32	54	
ICC	(see Note 3)		'126		36	62		36	62	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

§ Not more than one output should be shorted at a time.

NOTE 3: Data inputs = 0 V; output control = 4.5 V for '125 and 0 V for '126.

switching characteristics, V_{CC} = 5 V, T_A = 25°C (see Figure 1)

PARAMETER	TEST CONDITIONS			SN54125 SN74125			SN54126 SN74126			
				TYP	MAX	MIN	TYP	MAX		
^t PLH	R _I = 400 Ω,	C _L = 50 pF		8	13		8	13	ns	
^t PHL	η <u></u> - 400 s2,	9 [°] = 30 bi		12	18		12	18	110	
^t PZH	R _I = 400 Ω,	C _I = 50 pF		11	17		11	18	ns	
^t PZL	Π <u></u> = 400 s2,	0L = 30 bi		16	25		16	25	115	
^t PHZ	R _I = 400 Ω,	CI = 5 pF		5	8		10	16	ns	
^t PLZ	ιτ <u>Γ</u> = 300 32,	0 <u> </u>		7	12		12	18	115	

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

recommended operating conditions

		SN54LS125A SN54LS126A			SN74LS125A SN74LS126A			UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
VCC	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.7			0.8	V
ЮН	High-level output current			-1			-2.6	mA
IOL	Low-level output current			12			24	mA
TA	Operating free-air temperature	-55 125 0 70		70	°C			

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

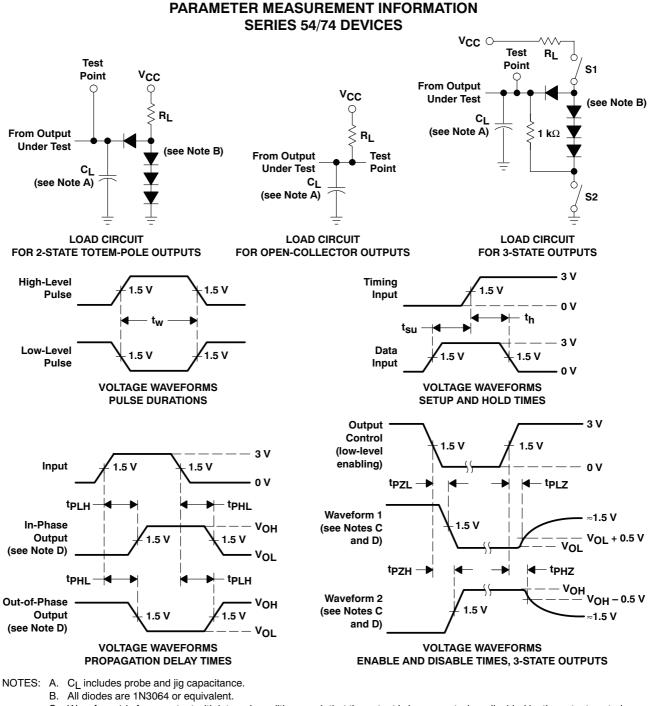
PARAMETER		TEST CONDITIONS [†]			54LS12	-	SN74LS125A SN74LS126A			UNIT	
			MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX			
VIK	$V_{CC} = MIN,$	lj = -18 mA				-1.5			-1.5	V	
Mari	V _{CC} = MIN,	V _{IL} = 0.7 V,	I _{OH} = -1 mA	2.4						v	
VOH	V _{IH} = 2 V	V _{IL} = 0.8 V	I _{OH} = -2.6 mA				2.4			v	
		V _{IL} = 0.7 V,	I _{OL} = 12 mA		0.25	0.4					
VOL	V _{CC} = MIN, V _{IH} = 2 V	V _{IL} = 0.8 V,	I _{OL} = 12 mA					0.25	0.4	V	
	VIH - 2 V	V _{IL} = 0.8 V,	I _{OL} = 24 mA					0.35	0.5		
)/	V _O = 2.4 V			20					
	V _{CC} = MAX,	VIL = 0.7 V	V _O = 0.4 V			-20					
IOZ	OZ V _{IH} = 2 V,	V _O = 2.4 V						20	μA		
		VIL = 0.8 V	V _O = 0.4 V						-20		
lj	V _{CC} = MAX,	VI = 7 V				0.1			0.1	mA	
Iн	V _{CC} = MAX,	VI = 2.7 V				20			20	μA	
	V _{CC} = MAX,	'LS125A-G inpu	ıts			-0.2			-0.2	mA	
ΙL	V _I = 0.4 V	'LS125A-A inpu	'LS125A-A inputs; 'LS126A All inputs			-0.4			-0.4	mA	
los§	V _{CC} = MAX			-40		-225	-40		-225	mA	
	V _{CC} = MAX		'LS125A		11	20		11	20	mΑ	
ICC (see Note 4)			'LS126A		12	22		12	22	mA	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, $T_A = 25^{\circ}$ C. § Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.

NOTE 4: Data inputs = 0 V; output control = 4.5 V for 'LS125A and 0 V for 'LS126A.

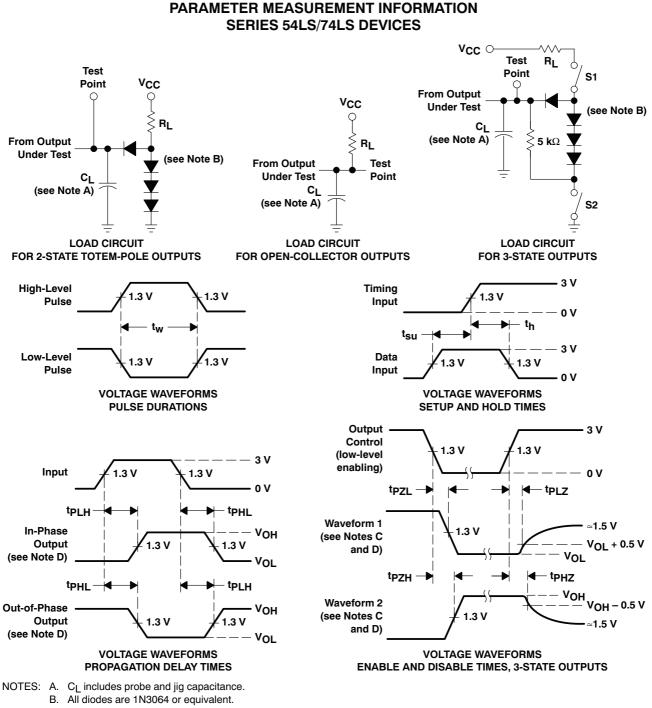
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$ (see Figure 1)


PARAMETER	TEST CONDITIONS			SN54LS125A SN74LS125A			SN54LS126A SN74LS126A		
				ТҮР	MAX	MIN	ТҮР	MAX	
^t PLH	R _I = 667 Ω,	Cl = 45 pF		9	15		9	15	ns
^t PHL	Π <u></u> = 007 32,	0L - 40 bi		7	18		8	18	110
^t PZH	$R_1 = 667 \Omega_1$	С _L = 45 рF		12	20		16	25	ns
^t PZL	Π <u></u> = 007 32,	0L - 40 bi		15	25		21	35	115
^t PHZ	R _I = 667 Ω,	Ci = 5 pE			20			25	ns
^t PLZ	Π <u></u> = 007 32,	CL = 5 pF			20			25	110

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

SN54125, SN54126, SN54LS125A, SN54LS126A, SN74125, SN74126, SN74LS125A, SN74LS126A QUADRUPLE BUS BUFFERS WITH 3-STATE OUTPUTS

SDLS044A – DECEMBER 1983 – REVISED MARCH 2002



- C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
 E. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO ≈ 50 Ω; t_f and t_f ≤ 7 ns for Series 54/74 devices and t_f and t_f ≤ 2.5 ns for Series 54/74S devices.
- F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

The SN54125, SN54126, SN74125, SN74126, and SN54LS126A are obsolete and are no longer supplied.

C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

- D. S1 and S2 are closed for tPLH, tPHL, tPHZ, and tPLZ; S1 is open and S2 is closed for tPZH; S1 is closed and S2 is open for tPZL.
- E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
- F. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O \approx 50 Ω , t_f \leq 1.5 ns, t_f \leq 2.6 ns.
- G. The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms

PACKAGE OPTION ADDENDUM

26-Sep-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
JM38510/32301B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301BCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301BDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301SCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
JM38510/32301SDA	ACTIVE	CFP	W	14	1	TBD	Call TI	Level-NC-NC-NC
SN54126J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN54LS125AJ	ACTIVE	CDIP	J	14	1	TBD	Call TI	Level-NC-NC-NC
SN74125N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74125N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74126N	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS125AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADBR	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADBRE4	ACTIVE	SSOP	DB	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS125AN3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI
SN74LS125ANE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS125ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ANSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS125ANSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126AD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126ADRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS126AJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74LS126AN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS126ANE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS126ANSR	ACTIVE	SO	NS	14	2000	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

V_{CC} 16

1

13-INPUT NAND GATE

15 14

2

3

13

12

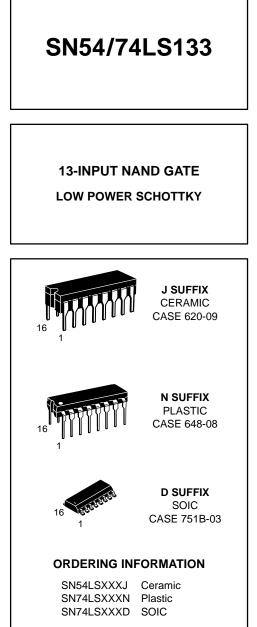
4 5

10

7

11

Г


С

6

9

8

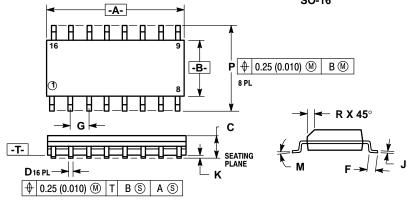
GND

GUARANTEED OPERATING RANGES

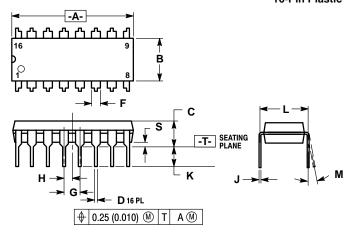
Symbol	Parameter		Min	Тур	Мах	Unit
VCC	Supply Voltage	54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
Т _А	Operating Ambient Temperature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	54, 74			-0.4	mA
IOL	Output Current — Low	54 74			4.0 8.0	mA

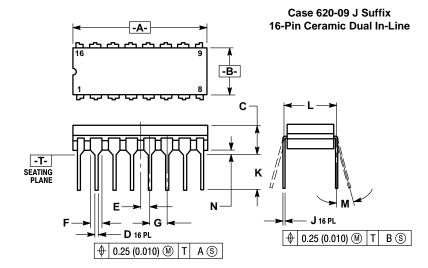
SN54/74LS133

				Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Tes	st Conditions	
VIH	Input HIGH Voltage		2.0			V	Guaranteed Inpu All Inputs	t HIGH Voltage for	
Ma		54			0.7	v	Guaranteed Input LOW Voltage for		
VIL	Input LOW Voltage	74			0.8	v	All Inputs		
VIK	Input Clamp Diode Voltage			-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$		
		54	2.5	3.5		V	$V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH}$		
VOH	Output HIGH Voltage	74	2.7	3.5		V	or V _{IL} per Truth 1	Table .	
Mai	Output LOW Voltage	54, 74		0.25	0.4	V	$I_{OL} = 4.0 \text{ mA}$ $V_{CC} = V_{CC} \text{ MIN}$ $V_{IN} = V_{IL} \text{ or } V_{IH}$		
VOL	Oulput LOW Voltage	74		0.35	0.5	V	I _{OL} = 8.0 mA	per Truth Table	
					20	μΑ	V _{CC} = MAX, V _{IN}	= 2.7 V	
ΙΗ	Input HIGH Current				0.1	mA	V _{CC} = MAX, V _{IN}	= 7.0 V	
۱ _{IL}	Input LOW Current				-0.4	mA	V _{CC} = MAX, V _{IN}	= 0.4 V	
IOS	Short Circuit Current (Note	1)	-20		-100	mA	V _{CC} = MAX		
ICC	Power Supply Current Total, Output HIGH				0.5	mA	V _{CC} = MAX		
	Total, Output LOW				1.1				


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.


AC CHARACTERISTICS (T_A = 25° C)


		Limits		Limits		Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions			
^t PLH	Turn-Off Delay, Input to Output		10	15	ns	V _{CC} = 5.0 V			
^t PHL	Turn-On Delay, Input to Output		40	59	ns	C _L = 15 pF			

Case 751B-03 D Suffix **16-Pin Plastic** SO-16

Case 648-08 N Suffix **16-Pin Plastic**

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD 2 3.
- PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) 4.
- PER SIDE. 751B-01 IS OBSOLETE, NEW STANDARD 751B-03. 5.

	MILLIM	ETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
A	9.80	10.00	0.386	0.393		
В	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27	BSC	0.050 BSC			
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7 °	0°	7°		
Р	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2.
- CONTROLLING DIMENSION: INCH. DIMENSION "L" TO CENTER OF LEADS WHEN FORMED PARALLEL. 3.
- DIMENSION "B" DOES NOT INCLUDE MOLD 4. FLASH.
- 5.
- ROUNDED CORNERS OPTIONAL. 648-01 THRU -07 OBSOLETE, NEW STANDARD 6. 648-08.

	MILLIM	ETERS	INC	HES		
DIM	MIN	MAX	MIN	MAX		
Α	18.80	19.55	0.740	0.770		
В	6.35	6.85	0.250	0.270		
С	3.69	4.44	0.145	0.175		
D	0.39	0.53	0.015	0.021		
F	1.02	1.77	0.040	0.070		
G	2.54	BSC	0.100) BSC		
н	1.27	BSC	0.050 BSC			
J	0.21	0.38	0.008	0.015		
K	2.80	3.30	0.110	0.130		
L	7.50	7.74	0.295	0.305		
М	0°	10°	0°	10°		
S	0.51	1.01	0.020	0.040		

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL 4. DIM F MAY NARROW TO 0.76 (0.030) WHERE THE LEAD ENTERS THE CERAMIC BODY. 5. 620-01 THRU -08 OBSOLETE, NEW STANDARD 620-09.

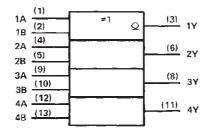
- 620-09.

	MILLIM	ETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	19.05	19.55	0.750	0.770	
В	6.10	7.36	0.240	0.290	
С	_	4.19	-	0.165	
D	0.39	0.53	0.015	0.021	
E	1.27	BSC	0.050	BSC	
F	1.40	1.77	0.055	0.070	
G	2.54	BSC	0.100 BSC		
J	0.23	0.27	0.009	0.011	
K	_	5.08	_	0.200	
L	7.62	BSC	0.300	BSC	
M	0°	15°	0°	15°	
N	0.39	0.88	0.015	0.035	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Motorola was negligent regarding the design or manufacture of the part. Motorola and "M" are registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

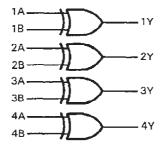
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.


 \Diamond

SDLS048

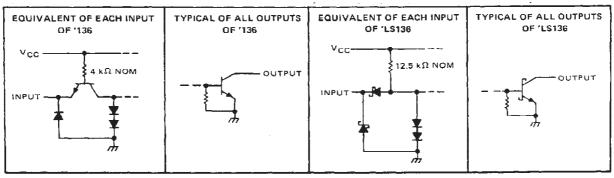
SN54136, SN54LS136, SN74136, SN74LS136 QUADRUPLE 2-INPUT EXCLUSIVE OR GATES WITH OPEN-COLLECTOR OUTPUTS DECEMBER 1972 - REVISED MARCH 1988

FUN	IT DI	N TABLE	
INP	UTS	OUTPUT	
Α	8	Y	
L	L	L	
L	н	н	
Н	L	н	
н	н	L	
H = F	high le	vel, L = low	level


logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

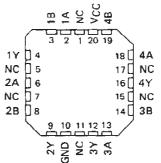
Pin numbers shown are for D, J, N, and W packages.


logic diagram (each gate)

positive logic

$$Y = A \bigoplus B = \overline{A} \cdot B + A \cdot \overline{B}$$

schematics of inputs and outputs


Resistor values shown are nominal.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard werranty. Production proceasing does not necessarily include testing of all parameters.

POST OFFICE BOX 655012 . DALLAS, TEXAS 75265

SN54136, SN54LS136 J OR W PACKAGE SN74136 N PACKAGE SN74LS136 D OR N PACKAGE (TOP VIEW)
1A $\begin{bmatrix} 1 \\ 1 \\ 14 \end{bmatrix}$ VCC 1B $\begin{bmatrix} 2 \\ 13 \\ 48 \\ 17 \\ 3 \\ 12 \\ 4A \\ 2A \\ 4 \\ 11 \\ 4Y \\ 2B \\ 5 \\ 10 \\ 3B \\ 2Y \\ 6 \\ 9 \\ 3A \\ GND \\ 7 \\ 8 \\ 3Y \\ SN54LS136 \dots FK PACKAGE \\ (TOP VIEW)$

NC - No internal connection

SN54136, SN74136 QUADRUPLE 2-INPUT EXCLUSIVE OR GATES WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)				 								. 7 V
Input voltage												
Operating free-air temperature range: SN54136	э.			 					-		–55°C	to 125°C
SN74136	δ.			 							. 0°0	to 70°C
Storage temperature range				 							–65°C	to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54136				SN74136				
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT			
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V			
High-level input voltage, VIH	2			2			V			
Low-level input voltage, VIL			0.B			0.8	V			
High-level output voltage, VOH			5.5			5.5	V			
Low-level output current, IOL			16	· · · · ·		16	mA			
Operating free-air temperature, TA	- 55		125	0		70	°C			

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			SN5413	6		118117					
PARAMETER		TEST C	ONDITIONS		MIN	түр‡	MAX	MIN	түр‡	MAX	UNIT
VIK	$V_{CC} = MIN$,	l₁ = −8 mA					- 1.5			- 1.5	V
1011	$V_{CC} = MIN$,	$V_{1H} = 2 V$.	$V_{ L} = 0.8 V,$	VOH = 5.5 V						0.25	mA
юн	$V_{CC} = MIN,$	VIH = 2 V.	$V_{ L} = 0.7 V,$	VOH = 5.5 V			0.25				
VOL	$V_{CC} = MIN,$	$V_{1H} = 2 V_{i}$	$V_{ L} = 0.8 V,$	1 _{OL} = 16 mA		0.2	0.4		0.2	0.4	V
<u>1</u>	$V_{CC} = MAX,$	VI = 5.5 V					1			1	mА
Чн	$V_{CC} = MAX,$	VI = 2.4 V					40			40	μA
ЦL	$V_{CC} = MAX,$	VI = 0.4 V					-1.6			- 1.6	mΑ
	$V_{CC} = MAX,$	See Note 2				30	43	T	30	50	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. [‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C. NOTE 2: I_{CC} is measured with one input of each gate at 4.5 V, the other inputs grounded, and the outputs open.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TEST CO	MIN	TYP	MAX	UNIT	
tPLH	AorB	Other input low	a 15 5		12	18	
tPHL	Aorb	Other input low	CL = 15 pF, RL = 400 Ω,		39	50	ns
tPLH		Other is nut high	-		14	22	ns
трнг		Other input high	See Note 3		42	55	

ItpLH propagation delay time, low-to-high-level output

tpLH propagation delay time, high-to-low-level output

SN54LS136, SN74LS136 **QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES** WITH OPEN-COLLECTOR OUTPUTS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	
Input voltage	, ,
Operating free-air temperature range: SN54LS136	55°C to 125°C
SN74LS136	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SI	54LS1	36	SI			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4,5	5	5.5	4.75	5	5.25	V
High-level output voltage, VOH			5.5			5.5	V
Low-level output current, IOL			4			8	mΑ
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

BARAMETER.	7507.001	IDUTION OF	SI	154LS1	36	SI			
PARAMETER	TEST CON	MIN	TYP‡	MAX	MIN	TYP	MAX	UNIT	
VIH High-level input voltage		2			2			V	
VIL Low-level input voltage			-		0.7		•	0.8	V.
VIK Input clamp voltage	VCC = MIN.	lj = −18 mA			-1.5			-1.5	V
IOH High-level output current	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, V _{OH} = 6.5 V	-		100			100	μA
VOI Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,			0.25	0.4		0.25	0.4	v
	VIL = VIL max	ioL = 8 mA	1				0.35	0.5	_
I Input current at maximum input voltage	V _{CC} = MAX,	V1 = 7 V		_	0.2			0.2	mΑ
IIH High-level input current	V _{CC} = MAX,	V1 = 2.7 V			40			40	μA
IL Low-level input current	V _{CC} = MAX,	V1 = 0.4 V	-		-0.8	·		-0.8	mA
ICC Supply current	VCC = MAX,	See Note 2	1	6.1	10		6.1	10	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. [‡]Ail typical values are at V_{CC} = 5 V, T_A = 25°C.

NOTE 2: ICC is measured with one input of each gate at 4.5 V, the other inputs grounded, and the outputs open.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TEST CO	DITIONS	MIN	түр	MAX	UNIT
tPLH	A or B	Other input low	С _L = 15 рF, Вµ = 2 кΩ,		18	30	ns
tPHL	C 01 D				18	30	
tpLH	A or B	Other input high (See Note 3)		18	30	ns	
^t PHL		Other input night	(3ee 14010 5)		18	30	

ItpLH propagation delay time, low-to-high-level output

tp[H propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS138, SN54S138, SN74LS138, SN74S138A **3 LINE TO 8 LINE DECODERS/DEMULTIPLEXERS**

SDLS014

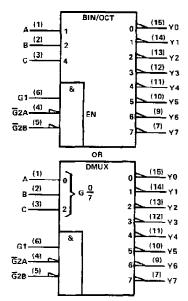
- **Designed Specifically for High-Speed:** Memory Decoders Data Transmission Systems
- **3 Enable Inputs to Simplify Cascading** and/or Data Reception
- Schottky-Clamped for High Performance

description

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memory decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these docoders can be used to minimize the effects of system decoding. When employed with highspeed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

The 'LS138, SN54S138, and SN74S138A decode one of eight lines dependent on the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.

All of these decoder/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and to simplify system design.


The SN54LS138 and SN54S138 are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LS138 and SN74S138A are characterized for operation from 0°C to 70°C.

DECEMBER 1972-REVISED MARCH 1988

SN54LS138, SN54S138 J OR W PACKAGE SN74LS138, SN74S138A D OR N PACKAGE (TOP VIEW)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
SN54LS138, SN54S138 FK PACKAGE (TOP VIEW)
C $2 \times 2 $

NC-No internal connection

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

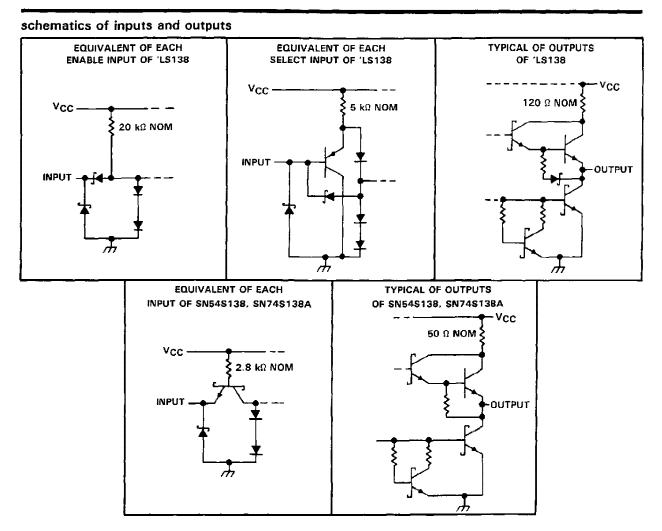
PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per tha terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 1972, Texas Instruments Incorporated

SN54LS138, SN54S138, SN74LS138, SN74S138A 3-LINE-TO 8-LINE DECODERS/DEMULTIPLEXERS

logic diagram and function table

Pin numbers shown are for D, J, N, and W packages.


	D	IPUT	S							~		
ENA	BLE	S	ELEC	Т		-		101	FUI	ə 		
G1	Ğ2*	С	8	Α	YO	Y1	Y2	YЗ	Y4	Y5	Y6	¥7
х	н	X	x	X	н	н	н	Н	H	н	Н	н
L	х	x	х	x	н	н	н	н	н	н	н	н
н	Ĺ	L	L	L	L	н	н	н	н	н	н	н
н	L	L	L	н	н	Ļ	н	н	н	н	н	н
н	L	L	н	L	н	н	L	н	н	н	н	H
н	L	L	н	н	н	н	н	L	н	Н	н	н
н	L	н	Ļ	L	н	н	н	н	L	н	Н	н
н	L	н	L	н	н	н	н	н	н	Ļ	н	н
н	Ł	н	н	L	н	н	н	Н	н	н	L	н
н	L	н	н	н	н	н	н	н	н	н	н	L

'LS138, SN54138, SN74S138A FUNCTION TABLE

* $\overline{G}2 = \overline{G}2A + \overline{G}2B$ H = high level, L = low level, X = irrelevant

SN54LS138, SN54S138, SN74LS138, SN74S138A 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) 7 V	
Input voltage	
Operating free-air temperature range: SN54LS138, SN54S138 55 °C to 125 °C	
SN74LS138, SN74S138A 0°C to 70°C	
Storage temperature range	

NOTE 1: Voltage values are with respect to network ground terminal.

SN54LS138, SN74LS138 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

recommended operating conditions

		SI	V54LS1	38	S	N74LS1	38	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
√ін	High-level input voltage	2			2			v
VIL	Low-level input voltage			0.7			0.8	v
ЮН	High-level output current			-0.4			-0.4	mA
^I OL	Low-level output current			4			8	mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS		S	N54LS1	38	S	MIN TYP* MAX -1.5 -1.5 2.7 3.4 0.25 0.4 0.35 0.5 0.1		
PARAMETER		TEST CONDITIONS	ļ	MIN	TYP‡	MAX	MIN	TYP	MAX	רואט
Viκ	$V_{CC} = MIN,$	_lj = ~18 mA				- 1.5			-1.5	v
Voн	V _{CC} = MIN, I _{OH} = -0.4 m	$V_{IH} = 2 V, V_{IL} = MAX,$		2.5	3.4		2.7	3.4		v
<u> </u>	$V_{CC} = MIN,$	$V_{\rm H} = 2 V$,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VOL	$V_{IL} = MAX$		1 _{0L} = 8 mA					0.35	0.5	v
ц <u> </u>	VCC = MAX.	$V_{I} \neq 7 V$				Q.1			0.1	mA
IIH	$V_{CC} = MAX,$	VI = 2.7 V				20			20	μA
1			Enable			-0.4			-0.4	mА
կլ	V _{CC} = MAX,	VI = 0.4 V	A, B, C			-0.2			-0.2	ШΑ
los	VCC = MAX			- 20		100	- 20		- 100	mA
^I CC	$V_{CC} = MAX$	Outputs enabled and open			6.3	10		6.3	10	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

§Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.

SN54LS138 FROM то LEVELS PARAMETER SN74LS138 UNIT TEST CONDITIONS (INPUT) (OUTPUT) OF DELAY TYP MAX MIN 11 20 ns t**P**LH 2 18 41 ^tPHL Binary ns Any Select 21 27 ns ^tPLH 3 39 **TPHL** $R_L = 2 k\Omega$. $C_{L} = 15 \text{ pF},$ 20 กร See Note 2 12 18 ns **tPLH** 2 20 32 ns ^tPHL Enable Any 14 26 ns τριμ 3 13 38 ns t<u>PHĻ</u>

switching characteristics, VCC = 5 V, TA = 25° C

¶tpLH = propagation delay time, low-to-high-level ouput

tp_{HL} = propagation delay time, high-to-low-level output

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN54S138, SN74S138A 3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7 V
nput voltage	5.5 V
Operating free-air temperature range: SN54S138	25°C
SN74S138A 0°C to	70°C
Storage temperature range $\dots \dots \dots$	50°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		s	SN54S138 SN74S13					UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	v
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage			0.8			0.8	V
юн	High-level output current			- 1			-1	mΑ
IOL	Low-level output current			20			20	mΑ
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	-	TEST CONDITIONS [†]	S SI	UNIT			
				MIN	TYP [‡]	MAX	1
Vik	$V_{CC} = MIN$	l∣ = −18 mA				-1.2	v
N	Martin Ballhi		SN54S'	2.5	3.4		V
∨он	V _{CC} ≠ MIN,	$V_{IH} = 2 V$, $V_{IL} = 0.8 V$. $I_{OH} = -1 mA$	SN745'	2.7	3.4		Ý
Vol	$V_{CC} = MIN,$	V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OL} = 20 mA				0.5	V
4	$V_{CC} = MAX$	$V_{ } = 5.5 V$				1	mA
ЧН	VCC = MAX.	Vj = 2.7 V		1		50	μA
۱ <u>۱</u> ۲	$V_{CC} = MAX,$	$V_1 = 0.5 V$				- 2	mΑ
los§	$V_{CC} = MAX$		_	-40		- 100	ΜA
'cc	V _{CC} = MAX.	Outputs enabled and open			49	74	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§] Not more than one output should be shorted at a time, and duration of the short circuit test should not exceed one second.

SN54S138, SN74S13BA **3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS**

switching characteristics, $V_{CC} = 5 V$, $T_{A} = 25 °C$

PARAMETER	FROM	TO	LEVELS	TEST CONDITIONS		SN54S138 SN74S138A									
	(INPUT)	(OUTPUT)	OF DELAY		MIN	MIN TYP MAX									
tPLH .						4.5	7	ns							
^t PHL	Binary	4	2			7	10.5	ns							
^t PLH	Select	Any	3			7.5	12	ns							
^t PHL			3	RL ≕ 280 Ω, CL = 15	ipF,	8	12	ns							
^t PLH				See Note 2		5	8	กร							
^t PHL				A .	A	Anu	A. 1914	A		2			7	11	ns
^t PLH	Enable	Any	Any	7	11	ns									
^t PHL			3			7	11	ns							

[†]tPLH = propagation delay time, low-to-high-level output
 tpHL = propagation delay time, high-to-low-level output
 NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

25-Sep-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
76005012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76005012A SNJ54LS 138FK	Samples
7600501EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600501EA SNJ54LS138J	Samples
7600501EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600501EA SNJ54LS138J	Samples
7600501FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600501FA SNJ54LS138W	Samples
7600501FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600501FA SNJ54LS138W	Samples
76041012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76041012A SNJ54S 138FK	Samples
76041012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76041012A SNJ54S 138FK	Samples
7604101EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604101EA SNJ54S138J	Samples
7604101EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604101EA SNJ54S138J	Samples
7604101FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604101FA SNJ54S138W	Samples
7604101FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604101FA SNJ54S138W	Samples
JM38510/07701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07701BEA	Samples
JM38510/07701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07701BEA	Samples
JM38510/07701BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07701BFA	Samples
JM38510/07701BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07701BFA	Samples
JM38510/30701B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30701B2A	Samples

25-Sep-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
JM38510/30701B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30701B2A	Samples
JM38510/30701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701BEA	Samples
JM38510/30701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701BEA	Samples
JM38510/30701BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701BFA	Samples
JM38510/30701BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701BFA	Samples
JM38510/30701SEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701SEA	Samples
JM38510/30701SEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701SEA	Samples
JM38510/30701SFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701SFA	Samples
JM38510/30701SFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701SFA	Samples
M38510/07701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07701BEA	Samples
M38510/07701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07701BEA	Samples
M38510/07701BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07701BFA	Samples
M38510/07701BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07701BFA	Samples
M38510/30701B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30701B2A	Samples
M38510/30701B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30701B2A	Samples
M38510/30701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701BEA	Samples
M38510/30701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701BEA	Samples
M38510/30701BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701BFA	Samples

25-Sep-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Sample
M38510/30701BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701BFA	Sample
M38510/30701SEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701SEA	Sample
M38510/30701SEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701SEA	Sample
M38510/30701SFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701SFA	Sample
M38510/30701SFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30701SFA	Sample
SN54LS138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS138J	Sample
SN54LS138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS138J	Sampl
SN54S138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S138J	Sampl
SN54S138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S138J	Sampl
SN74LS138D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Sampl
SN74LS138D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Samp
SN74LS138DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Sampl
SN74LS138DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Sampl
SN74LS138DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Sampl
SN74LS138DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Sampl
SN74LS138DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Samp
SN74LS138DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Samp
SN74LS138DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Samp

25-Sep-2013

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sampl
SN74LS138DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Sampl
SN74LS138DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Sampl
SN74LS138DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS138	Sampl
SN74LS138N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS138N	Sampl
SN74LS138N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS138N	Sampl
SN74LS138N3	OBSOLETE	E PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS138N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74LS138NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS138N	Sampl
SN74LS138NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS138N	Samp
SN74LS138NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS138	Samp
SN74LS138NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS138	Samp
SN74LS138NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS138	Samp
SN74LS138NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS138	Samp
SN74LS138NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS138	Samp
SN74LS138NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS138	Samp
SN74S138AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S138A	Samp
SN74S138ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S138A	Samp
SN74S138ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S138A	Samp
SN74S138AN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S138AN	Samp

25-Sep-2013

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74S138AN3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74S138ANE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S138AN	Samples
SNJ54LS138FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76005012A SNJ54LS 138FK	Samples
SNJ54LS138FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76005012A SNJ54LS 138FK	Samples
SNJ54LS138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600501EA SNJ54LS138J	Samples
SNJ54LS138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600501EA SNJ54LS138J	Samples
SNJ54LS138W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600501FA SNJ54LS138W	Samples
SNJ54LS138W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600501FA SNJ54LS138W	Samples
SNJ54S138FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76041012A SNJ54S 138FK	Samples
SNJ54S138FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76041012A SNJ54S 138FK	Samples
SNJ54S138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604101EA SNJ54S138J	Samples
SNJ54S138J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604101EA SNJ54S138J	Samples
SNJ54S138W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604101FA SNJ54S138W	Samples
SNJ54S138W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7604101FA SNJ54S138W	Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

www.ti.com

25-Sep-2013

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LS138, SN54LS138-SP, SN74LS138 :

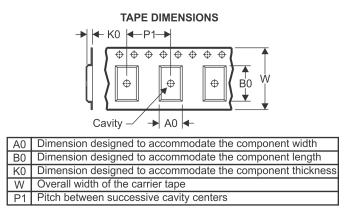
- Catalog: SN74LS138, SN54LS138
- Military: SN54LS138
- Space: SN54LS138-SP

NOTE: Qualified Version Definitions:

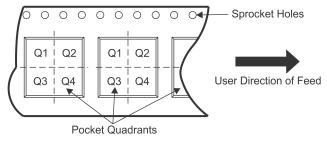
- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

25-Sep-2013

• Space - Radiation tolerant, ceramic packaging and qualified for use in Space-based application


PACKAGE MATERIALS INFORMATION

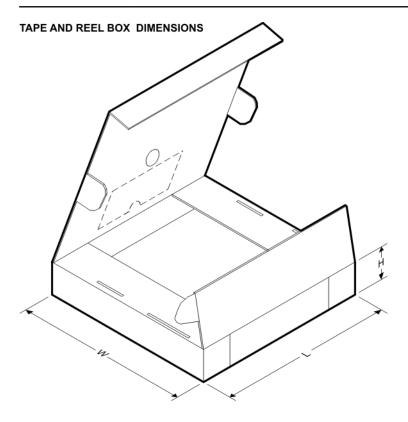
www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal	


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS138DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

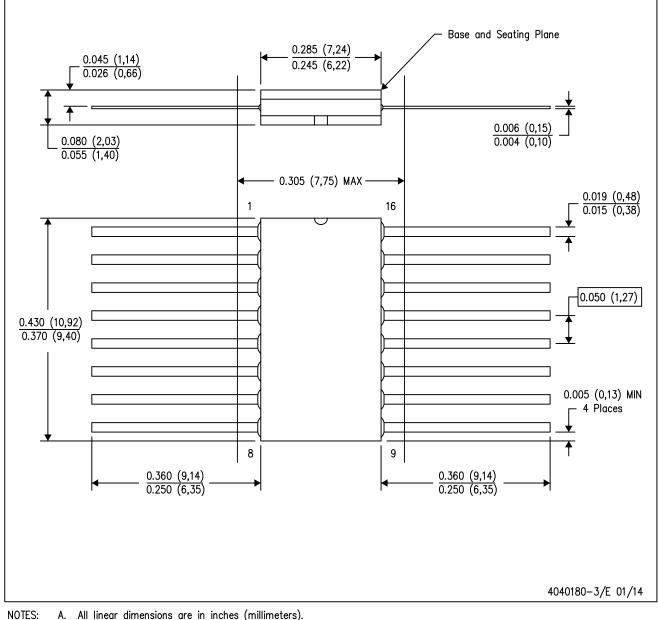
8-Apr-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS138DR	SOIC	D	16	2500	333.2	345.9	28.6

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

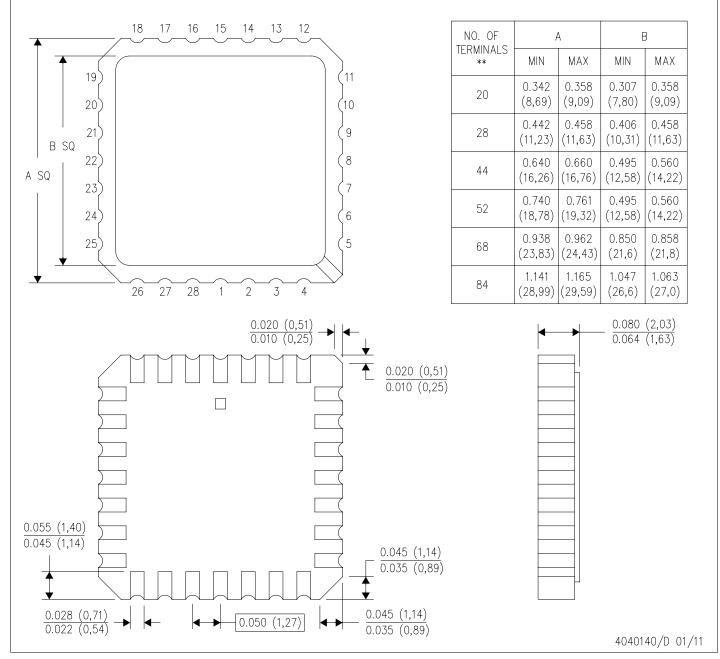


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16 and JEDEC MO-092AC

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

SN54LS139A, SN54S139, SN74LS139A, SN74S139A **DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS**

SDLS013

- **Designed Specifically for High-Speed:** Memory Decoders **Data Transmission Systems**
- Two Fully Independent 2- to 4-Line **Decoders/Demultiplexers**
- Schottky Clamped for High Performance ۲

description

These Schottky-clamped TTL MSI circuits are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these decoders can be used to minimize the effects of system decoding. When employed with highspeed memories utilizing a fast-enable circuit, the delay times of these decoders and the enable time of the memory are usually less than the typical access time of the memory. This means that the effective system delay introduced by the Schottky-clamped system decoder is negligible.

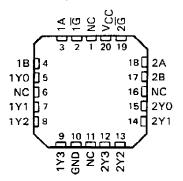
The circuit comprises two individual two-line to four-line decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and to simplify system design. The SN54LS139A and SN54S139 are characterized for operation range of -55°C to 125°C. The SN74LS139A and SN74S139A are characterized for operation from 0°C to 70°C.

FUNCTION	TABLE
----------	-------

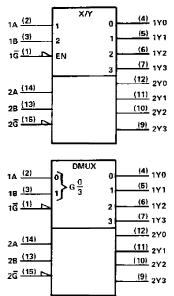
INP	UTS		Τ				-
ENABLE	SEL	ECT		UUT	PUTS		
G	6	Α	YO	Y1	Υ2	Y3	
н	Х	х	н	н	н	Η	
L	L	L	L	н	н	н	
L	L	Н	н	L	н	н	
L	н	L	H H	н	L	н	
L	н	н	н	н	н	L	

H = high level, L = low level, X = irrelevant


PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications par the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

DECEMBER 1972-REVISED MARCH 1988

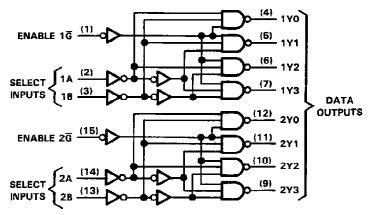
SN54LS139A, SN54S139 J OR W PACKAGE
SN74LS139A, SN74S139A D OR N PACKAGE
(TOP VIEW)


_			
1 G 🔲	1	O_{16}	Dvcc
1 A 🗌	2	15] 2G
1 B 🔲	3	14	🗌 2A
1Y0 🗍	4	13	☐ 2B
1Y1 🔲	5	12	2 2 Y 0
1Y2 🗍	6	11	2Y1
1Y3 🗍	7	10	2Y2
	8	9	2Y3

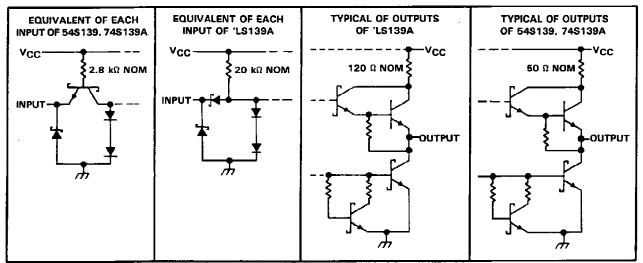
SN54LS139A, SN54S139 ... FK PACKAGE (TOP VIEW)

NC-No internal connection

logic symbols (alternatives)[†]


[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

Copyright @ 1972. Texas Instruments incorporated


SN54LS139A, SN54S139, SN74LS139A, SN74S139A DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (See Note 1)	7 V
Input voltage: 'LS139A	
54\$139, 74\$139A	5.5 V
Operating free-air temperature range: SN54LS139A, SN54S139	-55°C to 125°C
SN74LS139A, SN74S139A	. 0° C to 70°C
Storage temperature range	-65°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

SN54LS139A, SN74LS139A **DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS**

recommended operating conditions

		SN	SN54LS139A SN74LS139A			19A		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage	2			2			V
VIL	Low-level input voltage	·		0.7			0.8	v
юн	High-level output current			-0.4			-0.4	mA
IOL	Low-level output current			4				mA
TA	Operating free-air temperature	- 55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			SN	SN	118117				
		TEST CONDITIONS					MIN	TYP [‡]	MAX	UNIT
VIK	V _{CC} = MIN,	l _l = −18 mA				- 1.5			- 1.5	V
V _{OH}	V _{CC} = MIN, IOH = ~0.4 mA	V _{IH} = 2 V,	$V_{IL} = MAX,$	2.5	3.4		2.7	3 .4		v
VOL	$V_{CC} = MIN,$	V _{IH} = 2 V,	$I_{OL} = 4 \text{ mA}$	-	0.25	0.4		0.25	0.4	
¥0L	V _{IL} = MAX		IOL = 8 mA					0.35	0.5	V
4	$V_{CC} = MAX,$	V ₁ = 7 V				0.1			0.1	mA
Iн	$V_{CC} = MAX,$	VI = 2.7 V				20			20	μA
կլ	$V_{CC} = MAX,$	VI = 0.4 V		_		-0.4			-0.4	mA
los [§]	$V_{CC} = MAX$			- 20		- 100	- 20		- 100	mA
lcc	V _{CC} = MAX,	Outputs enable	and open		6.8	11	··· ·	6.8	11	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[§]Not more than one output should be shorted at a time, and duration of the short circuit test should not exceed one second.

switching characteristics, V_{CC} = 5 V, T_A = 25 °C (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LEVELS OF DELAY	TEST CONDITIONS		SN54LS139A SN74LS139A			
		(001701)	OI DELAT		MIN	TYP	MAX]	
tPLH			2			13	20	ns	
^T PHL	Binary		2			22	33	ns	
^t PLH	Select	Any				18	29	ns	
^t PHL		·	3	$R_L = 2 k\Omega$, $C_L = 15 pF$		25	38	ns	
t p LH	Enable	A 1917	2			16	24	ns	
t P HL		Αηγ	Z			21	32	ns	

TtPLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

SN54S139, SN74S139A DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLIERS

recommended operating conditions SN54S139 SN74S139A UNIT NOM MIN NOM MIN MAX MAX VCC Supply voltage 4.5 5 5.5 4.75 5 5.25 ۷ ⊻н High-level input voltage 2 2 ٧ VIL Low-level input voltage 0.8 0.8 v і<u>он</u> High-level output current - 1 - 1 mA 20 mΑ Low-level output current 20 IQL ТΑ -55 125 0 70 °C Operating free-air temperature

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TES		89 9A	UNIT			
			MIN	TYP [‡]	MAX	1		
VIK	V _{CC} = MIN,	lj = -18 mA	, <u></u> _				-1.2	V
M	$V_{CC} = MIN,$	$V_{IH} = 2 V_{e}$	$V_{1L} = 0.8 V_{2}$	SN54S'	2.5	3.4		v
∨он	IOH = -1 mA			SN745'	2.7	3.4		ľ
VOL	V _{CC} = MIN, I _{OL} = 20 mA	V _{1H} = 2 ∨,	V _{IL} = 0.8 V,	-			0.5	v
1	VCC = MAX,	VI = 5.5 V					1	mA
liH .	$V_{CC} = MAX,$	V₁ = 2.7 V					50	μA
ΙL	$V_{CC} = MAX,$	Vj = 0.5 V					- 2	mA
los [§]	$V_{CC} = MAX$				-40		- 100	mA
lcc	$V_{CC} = MAX,$	Outputs enable	ed and open			60	90	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

[§]Not more than one output should be shorted at a time, and duration of the short circuit test should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25 °C$ (see Note 2)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LEVELS OF DELAY	TEST CONDITIONS	_	SN54S139 SN74S139A				
	(INPOT)	(001201)	UF DELAT		MIN	TYP	MAX			
tPLH			2			5	7.5	ns		
^t PHL	Binary		2			6.5	10	ns		
^t PLH	Select	Any	3	D 300 0 C 15 -	_	7	12	ns		
^t PHL				$R_{L} = 280 \Omega, C_{L} = 15 \rho$		8	12	ns		
tPLH	F -abla	A		•		5	8	ns		
^t PHL	Enable	Any	2			6.5	10	ns		

 f_{tpLH} = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
76007012A	(1) ACTIVE	LCCC	FK	20	1 1	(2) TBD	(6) POST-PLATE	(3) N / A for Pkg Type	-55 to 125	(4/5) 76007012A	C
								0.71		SNJ54LS 139AFK	Samples
7600701EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600701EA SNJ54LS139AJ	Samples
7600701FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600701FA SNJ54LS139AW	Samples
7700401EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7700401EA SNJ54S139J	Samples
7700401FA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7700401FA SNJ54S139W	Samples
JM38510/30702B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30702B2A	Samples
JM38510/30702BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30702BEA	Samples
JM38510/30702BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30702BFA	Samples
JM38510/30702SEA	ACTIVE	CDIP	J	16	25	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30702SEA	Samples
JM38510/30702SFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30702SFA	Samples
M38510/30702B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30702B2A	Samples
M38510/30702BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30702BEA	Samples
M38510/30702BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30702BFA	Samples
M38510/30702SEA	ACTIVE	CDIP	J	16	25	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30702SEA	Samples
M38510/30702SFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30702SFA	Samples
SN54LS139AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS139AJ	Samples
SN54S139J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S139J	Samples

10-Jun-2014

Orderable Device	Status	Package Type	•	Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Sam
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
SN74LS139AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS139A	Sam
SN74LS139ADE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS139A	Sam
SN74LS139ADG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS139A	Sam
SN74LS139ADR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS139A	Sam
SN74LS139ADRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	0 to 70 LS139A	
SN74LS139ADRG4	ACTIVE	SOIC	D	16		TBD	Call TI	Call TI	0 to 70		San
SN74LS139AN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS139AN	San
SN74LS139AN3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70	70	
SN74LS139ANE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS139AN	San
SN74LS139ANSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS139A	San
SN74LS139ANSRE4	ACTIVE	SO	NS	16		TBD	Call TI	Call TI	0 to 70		Sar
SN74LS139ANSRG4	ACTIVE	SO	NS	16		TBD	Call TI	Call TI	0 to 70		Sar
SN74S139AD	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	S139A	Sar
SN74S139AN	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S139AN	Sar
SN74S139AN3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SNJ54LS139AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76007012A SNJ54LS 139AFK	Sar
SNJ54LS139AJ	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600701EA SNJ54LS139AJ	Sar
SNJ54LS139AW	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7600701FA SNJ54LS139AW	Sar
SNJ54S139FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54S 139FK	Sar

10-Jun-2014

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54S139J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7700401EA SNJ54S139J	Samples
SNJ54S139W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7700401FA SNJ54S139W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

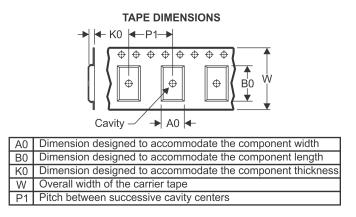
10-Jun-2014

OTHER QUALIFIED VERSIONS OF SN54LS139A, SN54LS139A-SP, SN74LS139A :

- Catalog: SN74LS139A, SN54LS139A
- Military: SN54LS139A
- Space: SN54LS139A-SP

NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

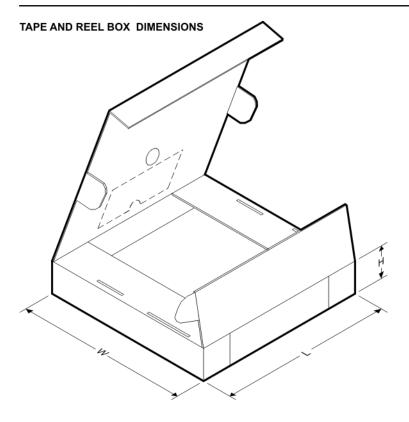

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dim	ensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
S	N74LS139ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN	V74LS139ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

26-Jan-2013

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS139ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS139ANSR	SO	NS	16	2000	367.0	367.0	38.0

J (R-GDIP-T**) 14 LEADS SHOWN

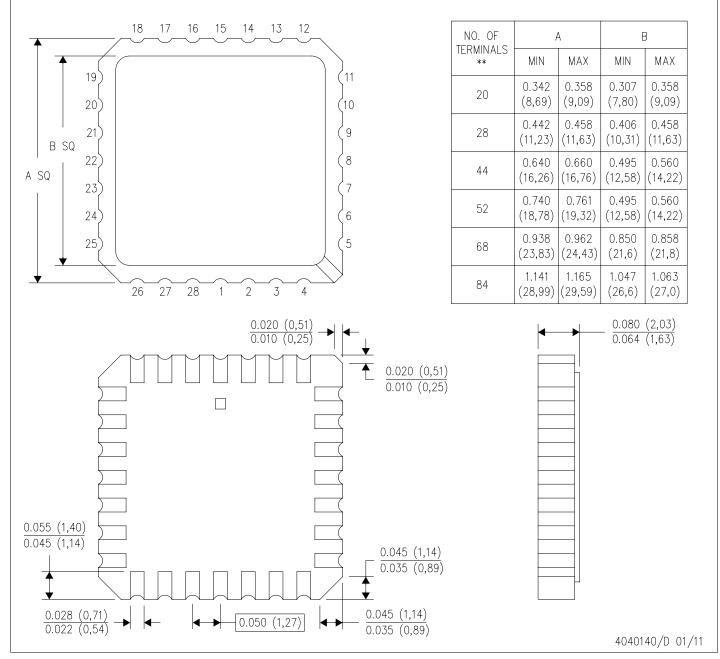
CERAMIC DUAL IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

SN54150, SN54151A, SN54LS151, SN54S151, SN74150, SN74151A, SN74LS151, SN74S151 DATA SELECTORS/MULTIPLEXERS

- '150 Selects One-of-Sixteen Data Sources
- Others Select One-of-Eight Data Sources
- All Perform Parallel-to-Serial Conversion
- All Permit Multiplexing from N Lines to One Line
- Also For Use as Boolean Function Generator
- Input-Clamping Diodes Simplify System Design
- Fully Compatible with Most TTL Circuits

ТҮРЕ	TYPICAL AVERAGE PROPAGATION DELAY TIME DATA INPUT TO W OUTPUT	TYPICAL POWER DISSIPATION
'150	13 ns	200 mW
ʻ151A	8 ns	145 mW
' LS1 51	13 ns	30 mW
'S151	4.5 ns	225 mW

description

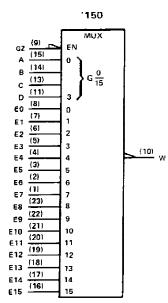
These monolithic data selectors/multiplexers contain full on-chip binary decoding to select the desired data source. The '150 selects one-of-sixteen data sources; the '151A, 'LS151, and 'S151 select one-of-eight data sources. The '150, '151A, 'LS151, and 'S151 have a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high, and the Y output (as applicable) low.

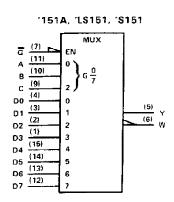
The '150 has only an inverted W output; the '151A, 'LS151, and 'S151 feature complementary W and Y outputs.

The '151A and '152A incorporate address buffers that have symmetrical propagation delay times through the complementary paths. This reduces the possibility of transients occurring at the output(s) due to changes made at the select inputs, even when the '151A outputs are enabled (i.e., strobe low).

-								
	DECE	MBER	1972	-RE\	/ISED	MARC	H 198	Į
								-

SN54150 J . SN74150	
(TOP)	
E7 [1]	Z4 VCC
E6 [] 2	23 E8
E0 [] 2 E5 [] 3	23 E9
E 4 □ 4	21 E10
E3 []5	20 E11
E2 []6	19 E12
E1 17	18 E13
E La G Da	
W [] 10	15 A
GND [12	_13 □ C
SN54151A, SN54LS151, SN54	
SN74151A	
SN74LS151, SN74S151	
	/IEW)
D3 🛛 1 🗸	16 VCC
D2 🗍 2	15 🗋 D4
D1 🔲 3	14 🗋 D5
D0 🗍 4	13 D6
Y 🗖 5	12 D7
w []6	11 🗍 A
ច្បីរ	10 8
	эПс
4	
SN54LS151, SN54S1	51 FK PACKAGE
(TOP V	IEW)
	о С
N D D D D D D D D D D D D D D D D D D D	D 4C
	20 19
	18 D5
D0 [] 5	17UD6
Y D 7	15 D7
WUB	14 U A
	12 13
ျဖ ရ ပွ	Um
Z Z U	


NC - No internal connection

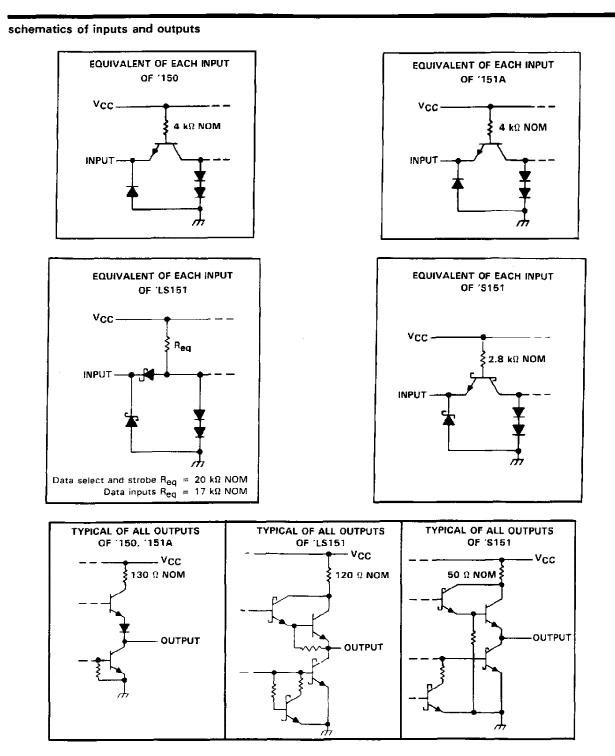

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Taxas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54150, SN54151A, SN54LS151, SN54S151, SN74150, SN74151A, SN74LS151, SN74S151 DATA SELECTORS/MULTIPLEXERS

logic symbols[†]

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are D, J, N, and W packages.

		FUI	NCTI	ON TABL	E								
		IN	PUT	5	OUTPUT								
[SEL	ECT		STROBE									
D	С	в	A	Ğ	W								
х	X	х	х	н	н								
L	L	L	L	L	ĒÕ								
L	L	L	н	L	E1								
L	L	H	L	L	E2								
L	L	н	н	L	Ē3								
L	н	L	L	L	Ē4								
L	н	L	H	L	E5								
L	н	н	L	L	E6								
L	н	н	н	L	Ē7								
н	L	L	L	L	E8								
н	L	L	H	L	Ē9								
н	L	н	L	L	E10								
н	L	н	н	L	E11								
н	н	L	L	L	E12								
н	н	L	н	L	E13								
н	н	н	L	L	E14								
н	н	н	н	L	E15								


'150

151A, LS151, S151 FUNCTION TABLE

	H	VPUT	rs	OUT	PUTS								
s	ELEC	т	STROBE		w								
С	8	A	Ğ	¥	**								
X	х	X	н	L	н								
L	L	L	L	DO	00								
L	L	н	L	D1	D1								
L	н	Ł	L D2	D2	D2								
L	н	н	L	D3	D3								
н	L	L	L	D4	D4								
н	L	н	L	D5	D5								
н	н	L	L	D6	D6								
н	н	н	L	D7	D7								

SN54150, SN54151A, SN54LS151, SN54S151 SN74150, SN74151A, SN74LS151, SN74S151 DATA SELECTORS/MULTIPLEXERS

TEXAS V INSTRUMENTS

SN54150, SN54151A, SN74150, SN74151A DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN54'			SN74'		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μA
Law-level output current, IOL			16			16	mΑ
Operating free-air temperature, TA	-55		125	0		70	Ċ

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDIT	uquat		150			'151A		
	PARAMETER	IEST CONDIT		MIN	TYP [‡]	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.8			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I _I =	-8 mA		· · ·	- 1.5			-1.5	v
∨он	High-level output voltage	$V_{CC} = MIN, V_{IH}$ $V_{IL} = 0.8 V, I_{OH}$	1	2.4	3.4		2.4	3.4		v
V _{OL}	Low-level output voltage	$V_{CC} = MIN, V_{IH}$ $V_{IL} = 0.8 V, I_{OL}$			0.2	0.4		0.2	0.4	v
4	Input current at maximum input voltage	$V_{CC} = MAX, V_{I} =$	= 5.5 V			1			1	mA
ЧH	High-level input current	$V_{CC} = MAX, V_{I} =$	= 2.4 V			40			40	μA
hμ	Low-level input current	$V_{CC} = MAX, V_{I} =$	= 0.4 V			-1.6			-1.6	mA
	a t		SN54'	- 20		- 55	- 20		- 55	
los	Short-circuit output current ⁹	V _{CC} = MAX SN74'		- 18		- 55	- 18		- 55	mA
'cc	Supply current	VCC = MAX, See	Note 3		40	68		29	48	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ⁴ All typical values at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. ⁵ Not more than one output of the '151A should be shorted at a time.

NOTE 3: ICC is measured with the strobe and data select inputs at 4.5 V, all other inputs and outputs open.

switching characteristics, VCC = 5 V, TA = 25°C

our contract	FROM	то	TEST		'150			151/	A,	
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	UNIT
^t PLH	A, B, or C	Y						25	38	
^t PHL	(4 levels)	,						25	38	- 15
tPLH	A, B, C, or D	W			23	35	_	17	26	ns
^t PHL	(3 levels)				22	33		19	30	
τ Ρ ŁΗ	Strobe G	Y	С _L = 15 рF,					21	33	ns
^t PHL	Strobe G		CL = 13 pr, RL = 400 Ω,					22	33	13
^t PLH	Strobe G	w	See Note 4 j		15.5	24		14	21	
^t PHL	Strobe G	~~			21	30		15	23	ns
tPLH	D0.45-0.7	Y						13	20	
τρητ	D0 thru D7	Ŧ						18	27	ns
tPLH	E0 thru E15, or	w			8.5	14		8	14	
^t PHL	D0 thru D7	**			13	20		8	14	ns

\$ tpLH = propagation delay time, low-to-high-level output tpHL = propagation delay time, high-to-low-level output NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

recommended operating conditions

	s	SN54LS151			SN74LS151			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, VCC	4.5	5	b,b	4.75	5	5.25	Y	
High-level output current, IOH			-400			-400	μA	
Low-level output current, IOL			4			8	mA	
Operating free-air temperature, T _A	5		125	0		70	C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS [†]	st SN54LS151		51	SN74LS151			
	PARAMETER	TEST CONDITIONS'	MIN	τγ₽‡	MAX	MIN	TYP [‡]	MAX	UNIT
ViH	High-level input voltage		2			2			v
VIL	Low-level input voltage		1		0.7			0.B	V
VIK	Input clamp voltage	$V_{CC} = MIN$, $I_{f} = -18 \text{ mA}$			- 1.5			-1.5	V
∨он	High-level output voltage	$V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = V_{IL}max, I_{OH} = -400 \ \mu A$	2.5	3,4		2.7	3.4		v
	V	$V_{CC} = MIN, V_{IH} = 2V, I_{OL} = 4 mA$		0.25	0.4		0.25	0.4	
VOL	Low-level output voltage	VIL = VILmax					0.35	0.5	V
ł	Input current at maximum input voltage	$V_{CC} = MAX, V_{\uparrow} = 7 V$			0.1			0.1	mA
Чн	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V	1		20			20	μΑ
կլ	Low-level input current	$V_{CC} = MAX, V_I = 0.4 V$			-0.4			-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX	- 20		- 100	- 20		- 100	mA
lcc	Supply current	V _{CC} = MAX, Outputs open, All inputs at 4.5 V		6.0	10		6.0	10	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. [‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C. [§] Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.

switching characteristics, V_{CC} = 5 V, T_A 25 °C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	דואט	
^t PLH	A, B, or C	Y		27	43		
^t PHL	(4 levels)	levels} ¥		18	30	ns	
^t PLH	A, B, or C	W	 Cլ = 15 pF,	14	23	23	
tPHL	(3 levels)	¥¥		20	32	ns	
^t PLH	Strobe G	Y		26	42		
tPHL		Ŧ		20	32	ns ns	
^t PLH	Strobe G	w	R _L – 2 kΩ, See Note 4	15	24		
tPHL	SHODE G	vv	See Note 4	18	30	ns	
tplh		Y	-	20	32		
tPHL	Any D	Ŷ		16	26	ns	
^t PLH	A	w		13	21		
tPHL	- Any D	vv		12	20	05	

SN54S151, SN74S151 DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

	\$	SN54S151			SN74S151			
	MIN	NOM	MAX	MIN	NOM	MAX		
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH			-t			-1	mA	
Low-level output current, IOL			20			20	mΑ	
Operating free-air temperature, TA	55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]		MIN	ТҮР‡	MAX	UNIT
ViH	High-level input voltage			2			v
VIL	Low-level input voltage					0.8	V
Vik	Input clamp voltage	$V_{CC} = MIN, I_I = -18 \text{ mA}$				-1.2	v
V		$V_{CC} = MIN, V_{IH} = 2V,$	SN54S151	2.5	3.4		.,
∨он	High-level output voltage	VIL = 0.8 V, I _{OH} =1 mA	SN74S151	2.7	3.4		v
¥		Vcc = MIN, V _{fH} = 2 V,	A	_			
VOL	Low-level output voltage	VIL = 0.8 V, IOL = 20 mA				0.5	V
4	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V				1	mA
ЧĤ	High-level input current	V _{CC} = MAX, V _I = 2.7 V				50	μA
ΊL	Low-level input current	V _{CC} - MAX, V _I = 0.5 V				-2	Am
los	Short-circuit output current§	V _{CC} = MAX		-40		-1 00	mA
lcc	Supply current	V _{CC} = MAX, All inputs at 4.5 V, All outputs open			45	70	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

type. ‡All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. §Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics. VCC = 5 V. TA 25°C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	мах	UNIT
^t PLH	A, B, or C	Y			12	18	
^t PHL	(4 leveis)	Ĩ	1		12	18	ns
t p lh	A, B, or C	W	-		10	15	
[†] PHL	(3 levels)				9	13.5	ns
tPLH	Any D	Y			8	12	
^t PHL	Any	1	$C_L = 15 pF$,		8	12	ns
tplh	- Any D	w	R _L = 280 kΩ, See Note 4		4.5	7	
^t PHL		V¥	See Note 4		4.5	7	ns
tplh	Strobe G	Y	1		11	16.5	
tphL		ř	ĺ		12	18	រាន
tPLH	- Strobe G	w]		9	13	
tPHL		44			8.5	12	กร

25-Sep-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9558001QJA	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9558001QJ A SNJ54150J	Samples
5962-9558001QKA	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9558001QK A SNJ54150W	Samples
5962-9558001QKA	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9558001QK A SNJ54150W	Samples
5962-9751601QCA	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	-55 to 125		
76010012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76010012A SNJ54LS 151FK	Samples
76010012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76010012A SNJ54LS 151FK	Samples
7601001EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601001EA SNJ54LS151J	Samples
7601001EA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601001EA SNJ54LS151J	Samples
7601001FA	NRND	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601001FA SNJ54LS151W	
7601001FA	NRND	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601001FA SNJ54LS151W	
JM38510/01401BKA	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 01401BKA	Samples
JM38510/01401BKA	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 01401BKA	Samples
JM38510/07901BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07901BEA	Samples
JM38510/07901BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07901BFA	Samples
JM38510/30901B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30901B2A	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
JM38510/30901B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30901B2A	Samples
JM38510/30901BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30901BEA	Samples
JM38510/30901BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30901BEA	Samples
JM38510/30901BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30901BFA	Samples
JM38510/30901BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30901BFA	Samples
M38510/01401BKA	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 01401BKA	Samples
M38510/01401BKA	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 01401BKA	Samples
M38510/07901BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07901BEA	Samples
M38510/07901BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 07901BFA	Samples
M38510/30901B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30901B2A	Samples
M38510/30901B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	JM38510/ 30901B2A	Samples
M38510/30901BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30901BEA	Samples
M38510/30901BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30901BEA	Samples
M38510/30901BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30901BFA	Samples
M38510/30901BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	JM38510/ 30901BFA	Samples
SN54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54150J	Samples
SN54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	SN54150J	Samples
SN54LS151J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS151J	Samples

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
SN54LS151J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54LS151J	Sample
SN54S151J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SN54S151J	Sample
SN54S15J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	-55 to 125		
SN74150N	ACTIVE	PDIP	Ν	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74150N	Sample
SN74150N	ACTIVE	PDIP	Ν	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74150N	Sample
SN74150NE4	ACTIVE	PDIP	Ν	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74150N	Sample
SN74150NE4	ACTIVE	PDIP	Ν	24	15	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74150N	Sample
SN74151AN	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	0 to 70		
SN74151AN	OBSOLETE	E PDIP	Ν	16		TBD	Call TI	Call TI	0 to 70		
SN74LS151D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sampl
SN74LS151D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sampl
SN74LS151DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sampl
SN74LS151DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sampl
SN74LS151DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sampl
SN74LS151DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sampl
SN74LS151DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sampl
SN74LS151DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sampl
SN74LS151DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Samp
SN74LS151DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Samp

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Sample
SN74LS151DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sample
SN74LS151DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LS151	Sample
SN74LS151J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	0 to 70		
SN74LS151J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	0 to 70		
SN74LS151N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS151N	Sample
SN74LS151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS151N	Sample
SN74LS151N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	0 to 70		
SN74LS151N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	0 to 70		
SN74LS151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS151N	Sampl
SN74LS151NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74LS151N	Sampl
SN74LS151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS151	Sampl
SN74LS151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS151	Sampl
SN74LS151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS151	Sampl
SN74LS151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS151	Sampl
SN74LS151NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS151	Sampl
SN74LS151NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS151	Sampl
SN74S151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S151N	Samp
SN74S151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S151N	Samp
SN74S151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		
SN74S151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	0 to 70		

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Sample
SN74S151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S151N	Sample
SN74S151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	0 to 70	SN74S151N	Sample
SNJ54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9558001QJ A SNJ54150J	Sample
SNJ54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-9558001QJ A SNJ54150J	Sample
SNJ54150W	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9558001QK A SNJ54150W	Sample
SNJ54150W	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type	-55 to 125	5962-9558001QK A SNJ54150W	Sampl
SNJ54LS151FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76010012A SNJ54LS 151FK	Sampl
SNJ54LS151FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	76010012A SNJ54LS 151FK	Samp
SNJ54LS151J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601001EA SNJ54LS151J	Samp
SNJ54LS151J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601001EA SNJ54LS151J	Samp
SNJ54LS151W	NRND	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601001FA SNJ54LS151W	
SNJ54LS151W	NRND	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	7601001FA SNJ54LS151W	
SNJ54S151FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	SNJ54S 151FK	Samp
SNJ54S151J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S151J	Samp
SNJ54S151W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	SNJ54S151W	Samp
SNJ54S15FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI	-55 to 125		

25-Sep-2013

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
SNJ54S15J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	-55 to 125		
SNJ54S15W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI	-55 to 125		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54150, SN54LS151, SN54S15, SN54S151, SN74150, SN74LS151, SN74S151 :

• Catalog: SN74150, SN74LS151, SN74S15, SN74S151

www.ti.com

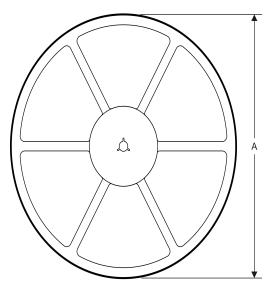
PACKAGE OPTION ADDENDUM

25-Sep-2013

• Military: SN54150, SN54LS151, SN54S151

NOTE: Qualified Version Definitions:

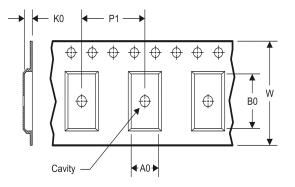
- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION

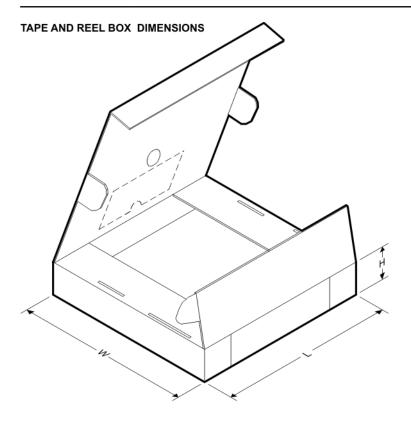
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


1	All dimensions are nominal												
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	SN74LS151DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
	SN74LS151NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

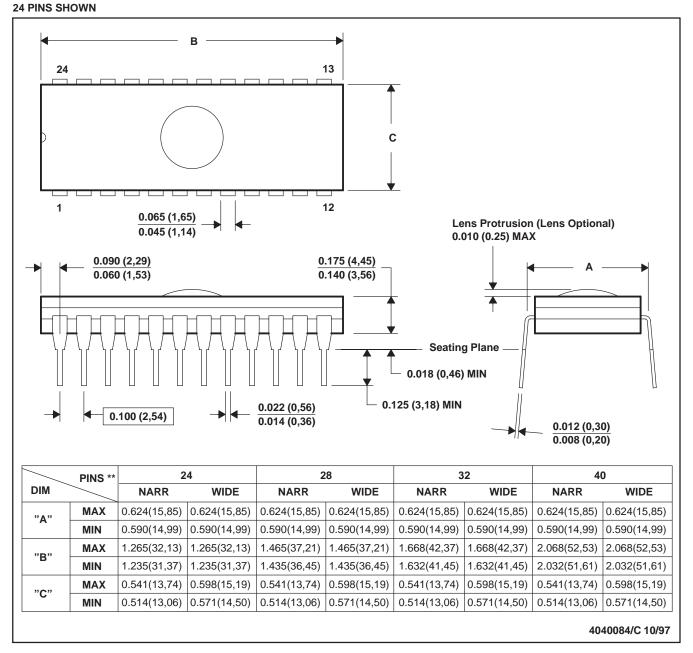
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS151DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS151NSR	SO	NS	16	2000	367.0	367.0	38.0

MECHANICAL DATA

MCDI004A - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL-IN-LINE PACKAGE

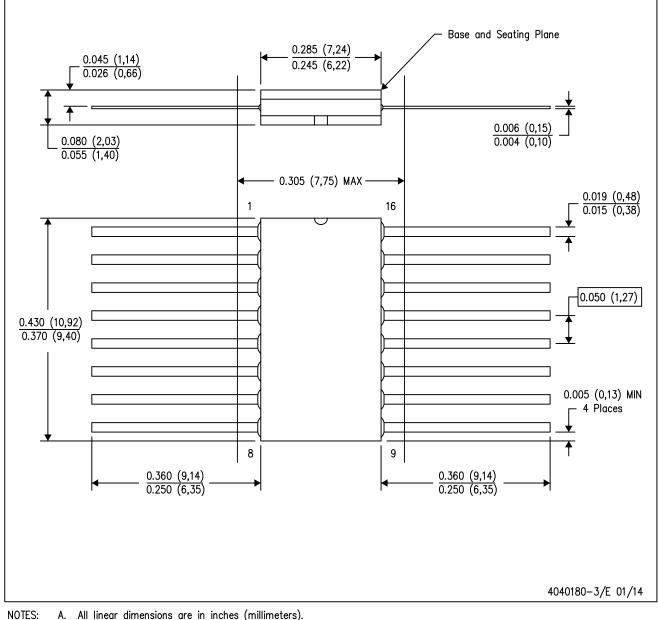
J (R-GDIP-T**)

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).
- D. This package can be hermetically sealed with a ceramic lid using glass frit.
- E. Index point is provided on cap for terminal identification.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

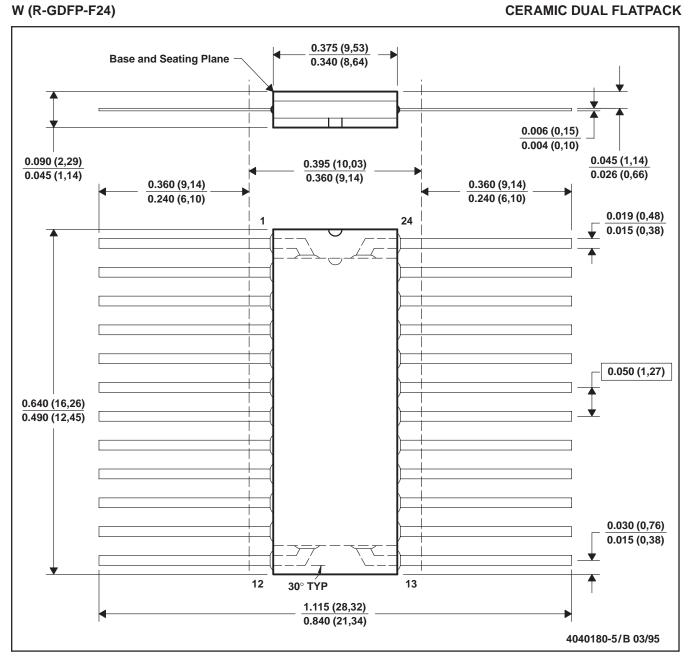


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



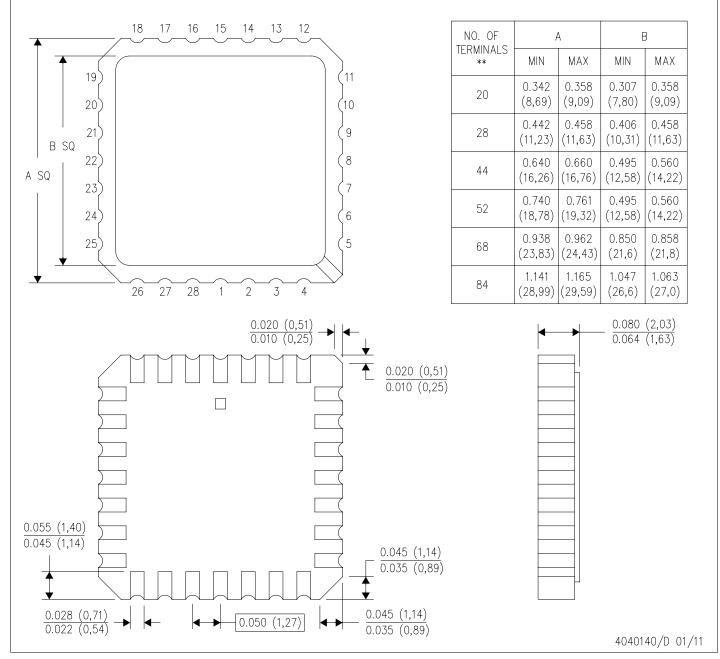
- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16 and JEDEC MO-092AC

MECHANICAL DATA

MCFP007 - OCTOBER 1994

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. This package can be hermetically sealed with a ceramic lid using glass frit.

- D. Falls within MIL-STD-1835 GDFP2-F24 and JEDEC MO-070AD
- E. Index point is provided on cap for terminal identification only.

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

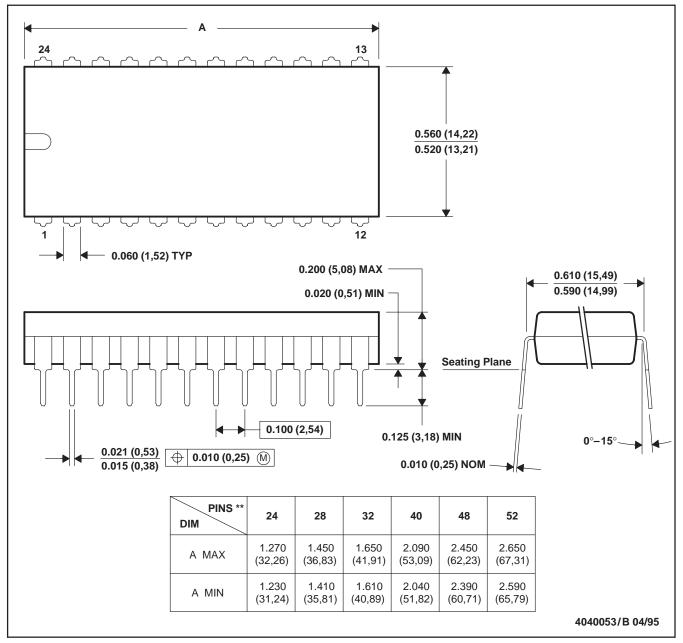
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


MECHANICAL DATA

MPDI008 - OCTOBER 1994

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-011
- D. Falls within JEDEC MS-015 (32 pin only)

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

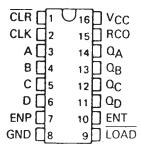
Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

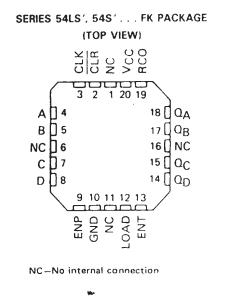
Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS SDLS060 - OCTOBER 1976 - REVISED MARCH 1988


'160, '161, 'LS160A, 'LS161A . . . SYNCHRONOUS COUNTERS WITH DIRECT CLEAR '162, '163, 'LS162A, 'LS163A, 'S162, 'S163 . . . FULLY SYNCHRONOUS COUNTERS

- Internal Look-Ahead for Fast Counting
- Carry Output for n-Bit Cascading
- Synchronous Counting
- Synchronously Programmable
- Load Control Line
- Diode-Clamped Inputs


TYPICAL		
TYPICAL PROPAGATION	MAXIMUM	TYPICAL
TIME, CLOCK TO	CLOCK	POWER
Q OUTPUT	FREQUENCY	DISSIPATION
14 ns	32 MHz	305 mW
14 ns	32 MHz	93 mW
9 ns	70 MHz	475 mW
	TIME, CLOCK TO Q OUTPUT 14 ns 14 ns	TYPICAL PROPAGATIONMAXIMUMTIME, CLOCK TOCLOCKQ OUTPUTFREQUENCY14 ns32 MHz14 ns32 MHz

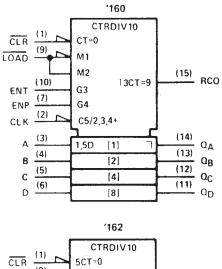
description

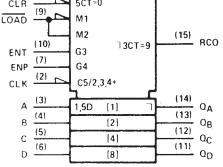
These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting designs. The '160,'162,'LS160A,'LS162A, and 'S162 are decade counters and the '161,'163,'LS161A,'LS163A, and 'S163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes that are normally associated with asynchronous (ripple clock) counters, however counting spikes may occur on the (RCO) ripple carry output. A buffered clock input triggers the four flip-flops on the rising edge of the clock input waveform. SERIES 54', 54LS' 54S'... J OR W PACKAGE SERIES 74'... N PACKAGE SERIES 74LS', 74S'... D OR N PACKAGE (TOP VIEW)

NC-No internal connection

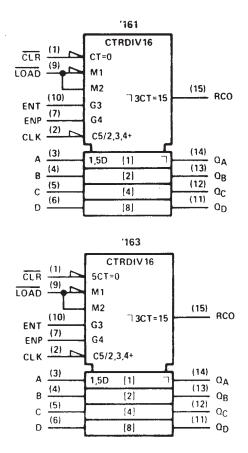
These counters are fully programmable; that is, the outputs may be preset to either level. As presetting is synchronous, setting up a low level at the load input disables the counter and causes the outputs to agree with the setup data after the next clock pulse regardless of the levels of the enable inputs. Low-to-high transitions at the load input of the '160 thru '163 should be avoided when the clock is low if the enable inputs are high at or before the transition. This restriction is not applicable to the 'LS160A thru 'LS163A or 'S162 or 'S163. The clear function for the '160, '161, 'LS160A, and 'LS161A is asynchronous and a low level at the clear input sets all four of the flip-flop outputs low regardless of the levels of clock, load, or enable inputs. The clear function for the '162, '163, 'LS162A, 'LS163A, 'S162, and 'S163 is synchronous and a low level at the clear input sets all four of the flip-flop outputs low after the next clock pulse, regardless of the levels of the enable inputs. This synchronous clear allows the count length to be modified easily as decoding the maximum count desired can be accomplished with one external NAND gate. The gate output is connected to the clear input to synchronously clear the counter to 0000 (LLLL). Low-to-high transitions at the clear input of the '162 and '163 should be avoided when the clock is low if the enable and load inputs are high at or before the transition.

Copyright © 1988, Texas Instruments Incorporated

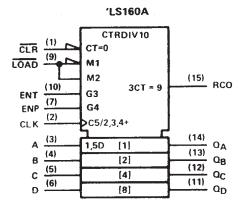

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

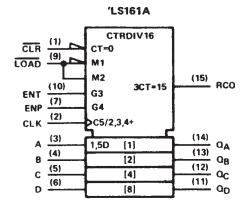

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

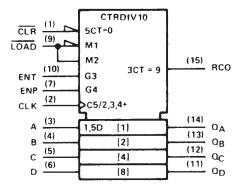
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a ripple carry output. Both count-enable inputs (P and T) must be high to count, and input T is fed forward to enable the ripple carry output. The ripple carry output thus enabled will produce a high-level output pulse with a duration approximately equal to the high-level portion of the QA output. This high-level overflow ripple carry pulse can be used to enable successive cascaded stages. High-to-low-level transitions at the enable P or T inputs of the '160 thru '163 should occur only when the clock input is high. Transitions at the enable P or T inputs of the 'LS160A thru 'LS163A or 'S162 and 'S163 are allowed regardless of the level of the clock input.


'LS160A thru 'LS163A,'S162 and 'S163 feature a fully independent clock circuit. Changes at control inputs (enable P or T, or load) that will modify the operating mode have no effect until clocking occurs. The function of the counter (whether enabled, disabled, loading, or counting) will be dictated solely by the conditions meeting the stable setup and hold times.

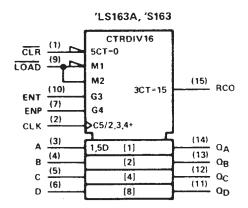
logic symbols[†]


[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.



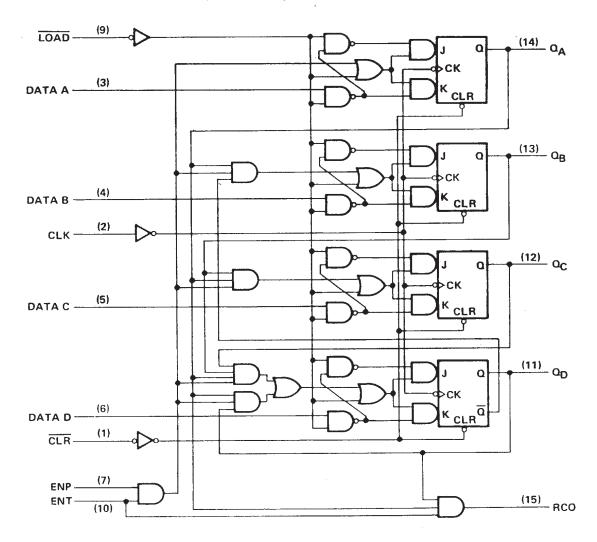

SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic symbols (continued)[†]



'LS162A, 'S162

[†]These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.


SN54160, SN54162, SN74160, SN74162 SYNCHRONOUS 4-BIT COUNTERS

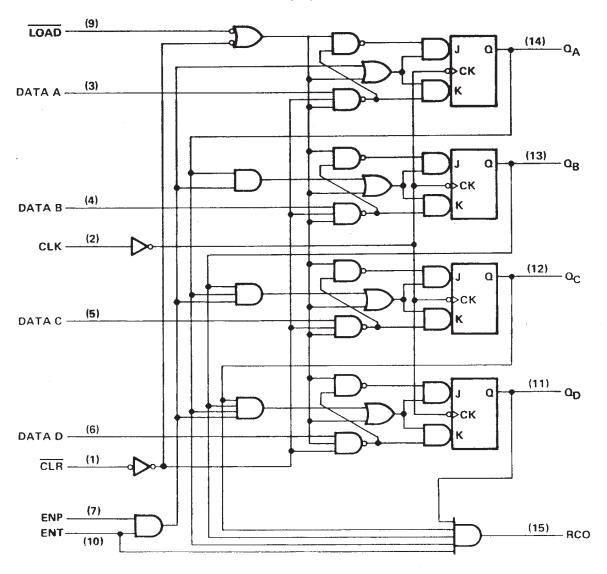
SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54160, SN74160 SYNCHRONOUS DECADE COUNTERS

SN54162, SN74162 synchronous decade counters are similar; however the clear is synchronous as shown for the SN54163, SN74163 binary counters at right.

Pin numbers shown are for D, J, N, and W packages

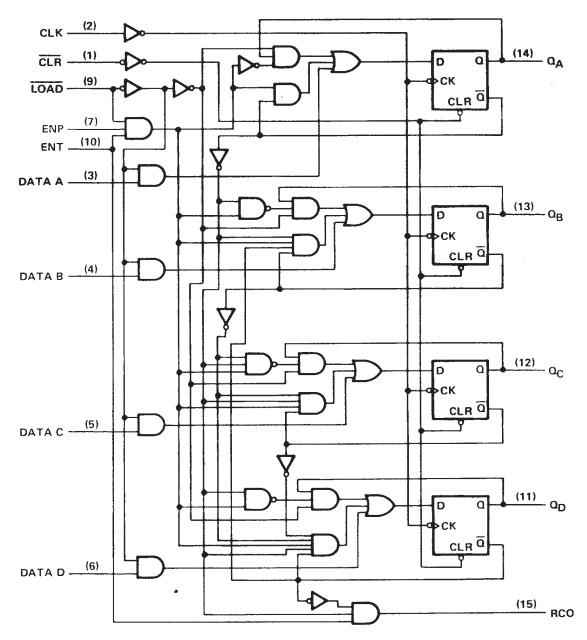

SN54161, SN54163, SN74161, SN74163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54163, SN74163 SYNCHRONOUS BINARY COUNTERS

SN54161, SN74161 synchronous binary counters are similar; however, the clear is asynchronous as shown for the SN54160, SN74160 decade counters at left.

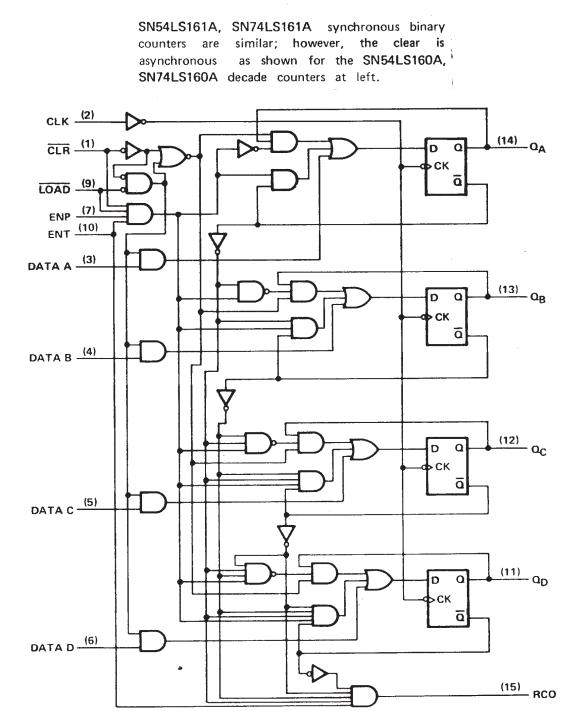

SN54LS160A, SN54LS162A, SN74LS160A, SN74LS162A SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54LS160A, SN74LS160A SYNCHRONOUS DECADE COUNTERS

SN54LS162A, SN74LS162A synchronous decade counters are similar; however the clear is synchronous as shown for the SN54LS163A, SN74LS163A binary counters at right.

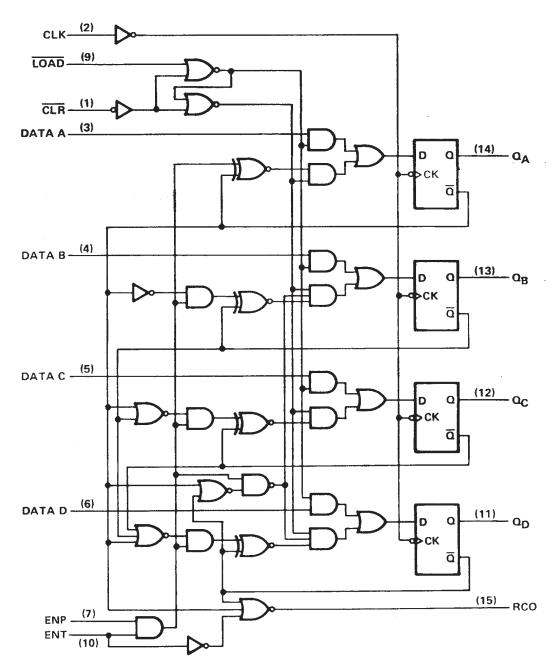


SN54LS161A, SN54LS163A, SN74LS161A, SN74LS163A SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54LS163A, SN74LS163A SYNCHRONOUS BINARY COUNTERS



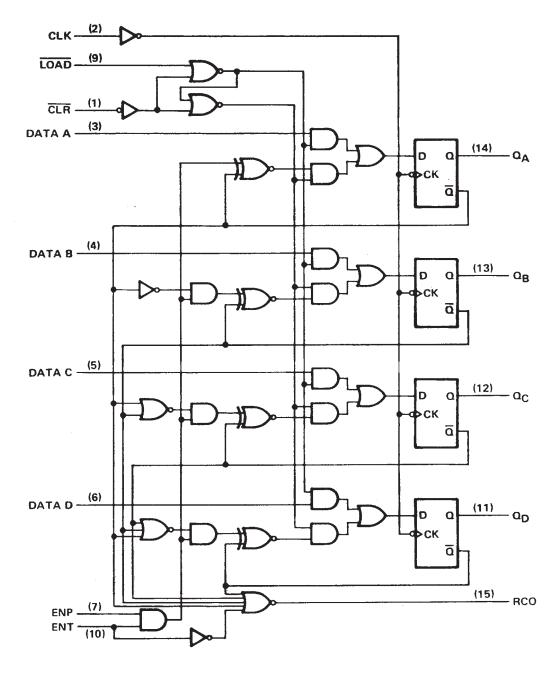
SN54S162, SN74S162 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

logic diagram (positive logic)

SN54S162, SN74S162 SYNCHRONOUS DECADE COUNTER

Pin numbers shown are for D, J, N, and W packages.



SN54S163, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

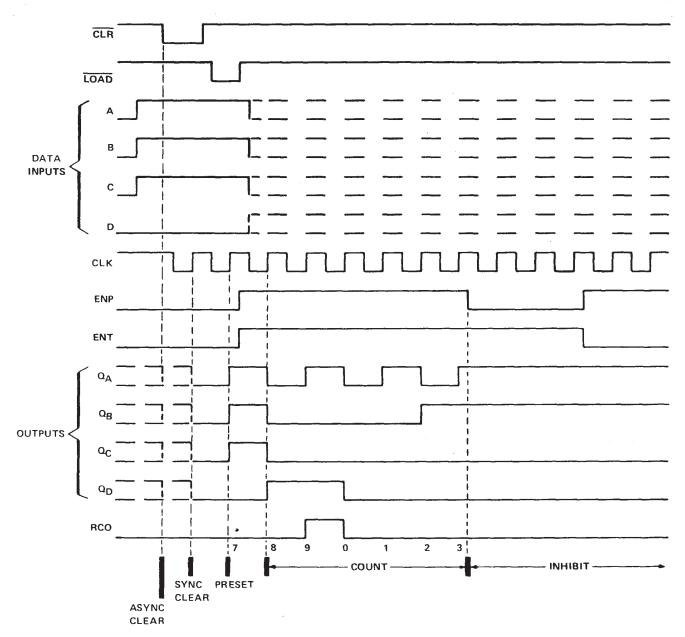
.

logic diagram (positive logic)

SN54S163, SN74S163 SYNCHRONOUS DECADE COUNTER

Pin numbers shown are for D, J, N, and W packages.

SN54160, SN54162, SN54LS160A, SN54LS162A, SN54S162, SN74160, SN74162, SN74LS160A, SN74LS162A, SN74S162 SYNCHRONOUS 4-BIT COUNTERS

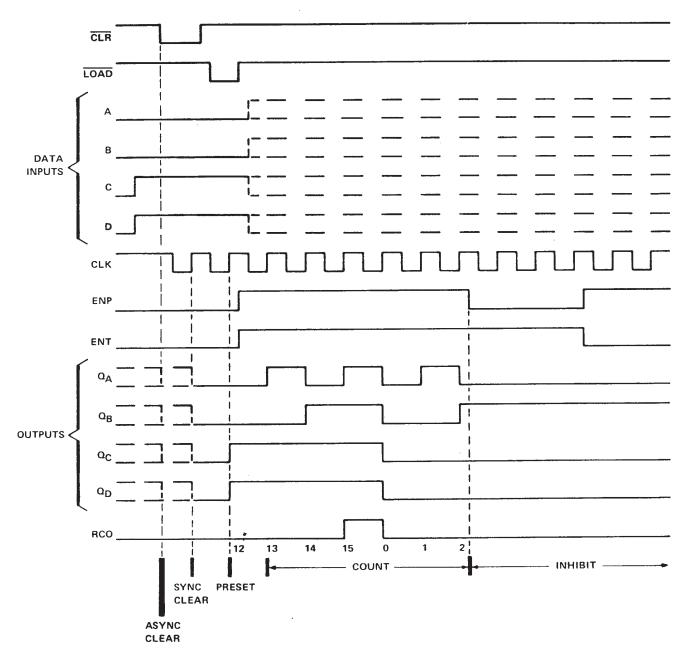

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

'160, '162, 'LS160A, 'LS162A, 'S162 DECADE COUNTERS

typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero ('160 and 'LS160A are asynchronous; '162, 'LS162A, and 'S162 are synchronous)
- 2. Preset to BCD seven
- 3. Count to eight, nine, zero, one, two, and three
- 4. Inhibit

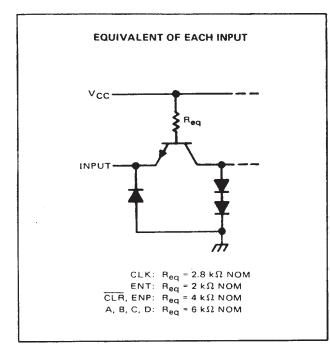


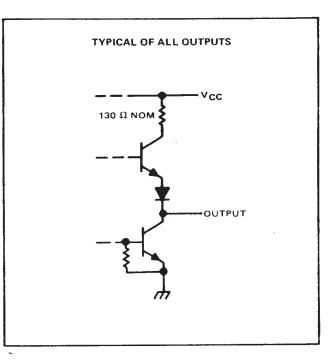
'161, 'LS161A, '163, 'LS163A, 'S163 BINARY COUNTERS

typical clear, preset, count, and inhibit sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero ('161 and 'LS161A are asynchronous; '163, 'LS163A, and 'S163 are synchronous)
- 2. Preset to binary twelve
- 3. Count to thirteen, fourteen fifteen, zero, one, and two
- 4. Inhibit





SN54160 THRU SN54163, SN74160 THRU SN74163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7V
Input voltage	5.5 V
Interemitter voltage (see Note 2)	
Operating free-air temperature range: SN54' Circuits	–55°C to 125°C
SN74' Circuits	. 0°C to 70°C
Storage temperature range	–65°C to 150°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
 2. This is the voltage between two emitters of a multiple-emitter transistor. For these circuits, this rating applies between the count enable inputs P and T.

recommended operating conditions

			SN 541	60, SN5	4161	SN741	60, SN7	74161	
			SN541	62, SN5	54163	SN741	62, SN	74163	UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		<u></u>	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH					800			-800	μA
Low-level output current, IOL					16			16	mA
Clock frequency, fclock			0		25	0		25	MHz
Width of clock pulse, tw(clock)			25			25			ns
Width of clear pulse, tw(clear)			20			20			ns
		Data inputs A, B, C, D	20	_		20			
	F	ENP	20			20			ns
Setup time, t _{su} (see Figures 1 and 2)	. [LOAD	25			25			115
	· · r	CLR [†]	20			20			L
Hold time at any input, th			0			0			ns
Operating free-air temperature, TA	· <u>_ · · · · · · · · · · · · · · · ·</u>		-55		125	0		70	°C

[†]This applies only for '162 and '163, which have synchronous clear inputs.

SN54160 THRU SN54163, SN74160 THRU SN74163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

	PARAMETER		TEST CO	TEST CONDITIONS [†]		SN54160, SN54161 SN54162, SN54163			SN74160, SN74161 SN74162, SN74163			
					MIN	TYP‡	MAX	MIN	TYP‡	MAX]	
VIH	High-level input	voltage			2			2			V	
VIL	Low-level input voltage						0.8			0.8	V	
VIK	Input clamp volt	tage	V _{CC} = MIN,	l _l =12 mA			-1.5			-1.5	V	
	Linh lough quantum		V _{CC} = MIN,	V _{IH} = 2 V,	2.4	3.4		2.4	3.4		V	
∨он	High-level outpu	it voitage	V _{IL} = 0.8 V,	I _{OH} = -800 μA	2.4	3.4		2.4	3.4	,	v	
VOL	Low-level output voltage		V _{CC} = MIN,	V _{IH} = 2 V,	1	0.0	0.4		0.2	0.4	V	
			V _{IL} = 0.8 V,	IOL = 16 mA		0.2	0.4		0.2	0.4	V.	
11	Input current at	maximum input voltage	V _{CC} = MAX,	VI = 5.5 V			1			1	mA	
1	High-level	CLK or ENT	1/ MAAY	V 2 4 V			80			80		
ΙΗ	input current	Other inputs	$V_{CC} = MAX,$	vi = 2.4 v			40			40	μA	
	Low-level	CLK or ENT					-3.2			-3.2		
ΗL	input current	Other inputs	$-V_{CC} = MAX,$	V = 0.4 V			-1.6			-1.6	mA	
los	Short-circuit output current§		V _{CC} = MAX		-20		-57	-18		-57	mA	
1ссн	Supply current,	all outputs high	V _{CC} = MAX,	See Note 3		59	85		59	94	mA	
ICCL	Supply current, all outputs low		V _{CC} = MAX,	See Note 4	1	63	91		63	101	mA	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

\$Not more than one output should be shorted at a time.

NOTES: 3. I_{CCH} is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open. 4. I_{CCL} is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

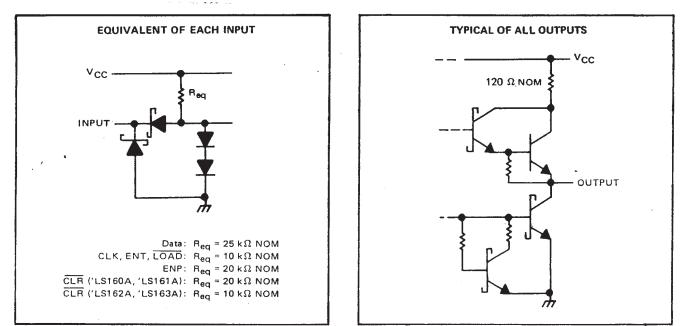
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	түр	ΜΑΧ	רואט
f _{max}				25	32		MHz
^t PLH	CLK		7		23	35	ns
tPHL		RCO			23	35	
tPLH	CLK	Апу	$C_{L} = 15 pF$,		13	20	ns
^t PHL	(LOAD input high)	۵	$R_L = 400 \Omega$,		15	23	
tPLH	CLK	Αηγ	See Figures 1 and 2		17	25	ns
tPHL	(LOAD input low)	Q	and Note 5		19	29	
τριμ			-		11	16	
^t PHL	ENT	RCO			11	16	ns
tPHL	CLR	Any Q	-1		26	38	ns

¶f_{max} = Maximum clock frequency

tpLH = propagation delay time, low-to-high-level output

tpHL = propagation delay time, high-to-low-level output


NOTE 5: Propagation delay for clearing is measured from the clear input for the '160 and '161 or from the clock input transition for the '162 and '163.

SN54LS160 THRU SN54LS163A, SN74LS160 THRU SN74LS163A SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 7)	· · · · · · · · · · · · · · · · · · ·
input voltage	· · · · · · · · · · · · · · · · · · ·
Operating free-air temperature range: SN54LS' Circuits	
SN74LS' Circuits	0°C to 70°C
Storage temperature range 🕠	

NOTE 7: Voltage values are with respect to network ground terminal.

recommended operating conditions

				1	SN54LS	57	:	SN74LS		
<u>-</u>				MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage			4.5	5	5.5	4.75	5	5.25	V
ЮН	High-level output current					- 400			- 400	μA
^I OL	Low-level output current					4			8	mA
fclock	Clock frequency			0		25	0		25	MHz
tw(clock)	Width of clock pulse			25			25			ns
^t w(clear)	Width of clear pulse			20			20			ns
			Data inputs A, B, C, D	20			20			
			ENP or ENT	20			20			
	Conversions (and Cineses 1 and 2)	•	LOAD	20			20			ns
t _{su}	Setup time, (see Figures 1 and 2)		LOAD inactive state	20			20			(15
			CLR [†]	20			20			
			CLR inactive state	25			25			
th	Hold time at any input		· · · · · · · · · · · · · · · · · · ·	3			3			ns
TA	Operating free-air temperature		<u></u>	55		125	0		70	°C

[†] This applies only for 'LS162 and 'LS163, which have synchronous clear inputs.

SN54LS160 THRU SN54LS163A, SN74LS160 THRU SN74LS163A SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

				+		SN54LS			SN74LS	ŕ	
	PARA	METER	TEST CON	DITIONS	MIN	TYP‡	MAX	MIN	түр‡	MAX	UNIT
VIH	High-level input vo	oltage		· · · · · · · · · · · · · · · · · · ·	2			2			V
VIL	Low-level input vo	oltage					0.7			0.8	V
VIK	Input clamp volta	ge	V _{CC} = MIN,	II = -18 mA			-1.5			-1.5	V
	High-level output voltage			V _{IH} = 2 V, I _{OH} = -400 μA	2.5	3.4		2.7	3.4		v
Voi	Low-level output	voltage	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	v
VUL	· · · · · · · · · · · · · · · · · · ·		VIL = VIL max	10L = 8 mA					0.35	0.5	
	locut current	Data or ENP				_	0.1			0.1	
	at maximum	LOAD, CLK, or ENT	$V_{CC} = MAX,$	$\lambda = 7 \lambda$			0.2			0.2	mA
II.		CLR ('LS160A, 'LS161A)		v ~/v			0.1			0.1] '''``
	input voitage	CLR ('LS162A, 'LS163A)			0.2		0.2				
		Data or ENP				_	20			20	
	High-level	LOAD, CLK, or ENT		V. = 2.7.V			40			40	μA
ЧΗ	input current	CLR ('LS160A, 'LS161A)	V _{CC} = MAX,	vi - 2.7 v			20			20	
		CLR ('LS162A, 'LS163A)					40			40	·
		Data or ENP					-0.4			-0.4	
	Low-level	LOAD, CLK, or ENT		V - 0 4 V			-0.8			-0.8] mA
ΗL	input current CLR ('LS160A, 'LS161A) CLR ('LS162A, 'LS163A)		V _{CC} = MAX,	VI = 0.4 V			-0.4			-0.4] """
							-0.8			-0.8	ł
los	Short-circuit outp	ut current §	V _{CC} = MAX		-20		-100	-20		-100	mA
ICCH	Supply current, al	l outputs high	V _{CC} = MAX,	See Note 3		18	31		18	31	mA
	Supply current, al	l outputs low	V _{CC} = MAX,	See Note 4		19	32		19	32	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SNot more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTES: 3. ICCH is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.

4. ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

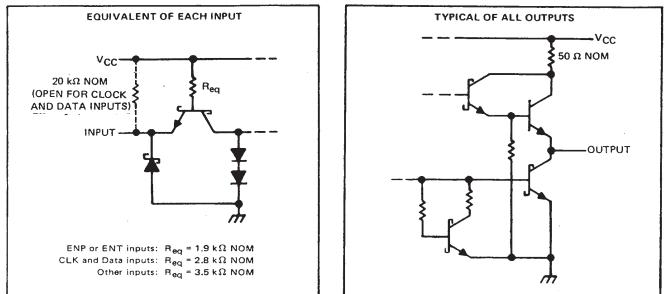
switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNI
fmax				25	32		MHz
^t PLH		RCO			20	35	ns
tPHL	- CLK	RUU	0 15 5		18	35	
tPLH	CLK	Any	$-C_L = 15 \text{pF},$		13	24	ns
tPHL	(LOAD input high)	Q	$R_L = 2 k \Omega,$		18	27	
tPLH	CLK	Any	See figures		13	24	ns
tPHL	(LOAD input low)	۵	1 and 2 and		18	27] ""
tPLH	• +		Note 8		9	14	ns
tPHL	- ENT	RCO			9	14] "3
tPHL	CLR	Any Q	1		20	28	ns

¶f_{max} = Maximum clock frequency

tpLH = propagation delay time, low-to-high-level output.

tpHL = propagation delay time, high-to-low-level output.


NOTE 8: Propagation delay for clearing is measured from the clear input for the 'LS160A and 'LS161A or from the clock transition for the 'LS162A and 'LS163A.

SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage	5.5 V
Interemitter voltage (see Note 2)	5.5 V
Operating free-air temperature range: SN54S162, SN54S163 (see Note 10)	55°C to 125°C
SN74S162, SN74S163	0°C to 70°C
Storage temperature range	

recommended operating conditions

			SN54S	162, SN	54S163	SN74S	162, SN7	74S163	
			MIN	NOM	MAX	MIN	NOM	MAX	UNI
Supply voltage, Vec			4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH					1			1	mA
Low-level output current, IOL					20			20	mA
Clock frequency, fclock			0		40	0		40	MH
Width of clock pulse, tw(ctock) (high	or low)		10			10			ns
Width of clear pulse, tw(clear)			10			10			ns
Vicical /		Data inputs, A, B, C, D	4			4			
		ENP or ENT	12			12]
		LOAD	14			14			ns
Setup time, t _{su} (see Figure 4)		CLR	14			14			
		LOAD inactive-state	12			12			
	•	CLR inactive-state	12			12		- 1m	
Release time, trelease (see Figure 4)		ENP or ENT			4			4	ns
		Data inputs A, B, C, D	3			3			
Hold time, th (see Figure 4)		LOAD	0			0			ns
		CLR	0			0			
Operating free-air temperature, TA (s	ee Note 1	0)	55		125	0		70	С

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

 This is the voltage between two emitters of a multiple emitter transistor. For these circuits, this rating applies between the count enable inputs P and T.

10. An SN54S162 or SN54S163 in the W package operating at free air temperatures above 91. C requires a heal sink that provides a thermal resistance from case to free-air, $R_{\theta CA}$, of not more than 26° C/W.

SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

	PARAMETER		TEST CONDITIONS [†]		1	SN54S10			52 53	UNIT	
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	IL Low-level input voltage						0.8			0.8	V
VIr	Input clamp voltage		V _{CC} = MIN,	l₁ = −18 mA			-1.2			-1.2	V
V _{ОН}	High-level output voltage		V _{CC} ≈ MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OH} = -1 mA	2.5	3.4		2.7	3.4		v
VOL	OL Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,	V _{IH} = 2 V, I _{OL} = 20 mA			0.5			0.5	v
4	Input current at maximum	i input voltage	V _{CC} = MAX,	V ₁ = 5.5 V	-		1			1	mA
		CLK and data inputs		N - 2 7 V	1		50			50	
IН	High-level input current	Other inputs	V _{CC} = MAX,	VI - 2.7 V	-10		-200	-10		-200	μA
	· · · · ·	ENT			1		-4			4	
ΊL	Low-level input current Other inputs		V _{CC} = MAX,	v ₁ = 0.5 v			2			- 2	mA
10S)S Short-circuit output current §		V _{CC} - MAX		-40		-100	40		100	mA
'cc	Supply current		V _{CC} = MAX		1	95	160	-	95	160	mA

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

¹For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 $\pm Alt$ typical values are at V $_{CC}$ = 5 V , T $_{A}$ = 25 C.

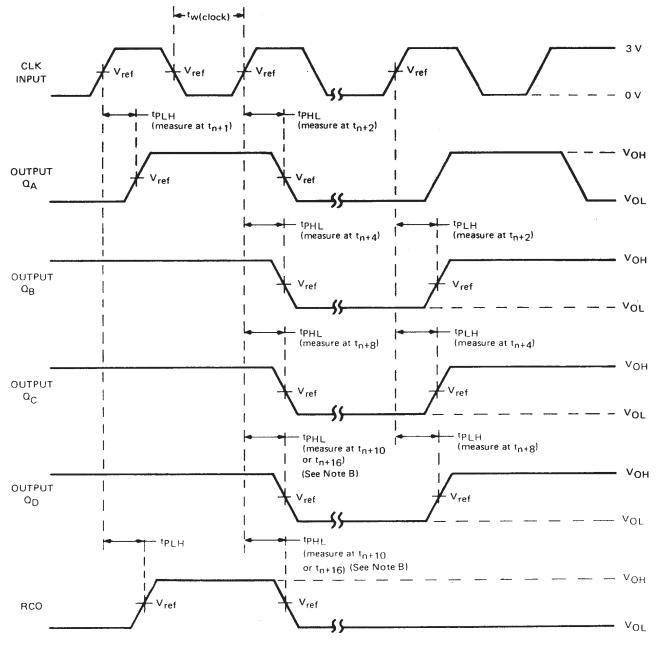
\$ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax				40	70		MH2
<u>тргн</u>					14	25	ns
tPHL	CLK	CLK RCO CL 15 pF,	С _L 15 рF,		17	25	
tPLH	CLK	Any Q	C _L 15 pF , R _L = 280 Ω, See Figures 1, 3, and 4		8	15	ns
tPHL	CLK	Anyo			10	15	
TPLH -					10	15	ns
трнг	ENT	RCO			10	15	

 $f_{max} \equiv maximum clock frequency$

 $t_{PLH} \equiv propagation delay time, low to high level output$


tPHI ≡ propagation defay time, high-to low level output

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

VOLTAGE WAVEFORMS

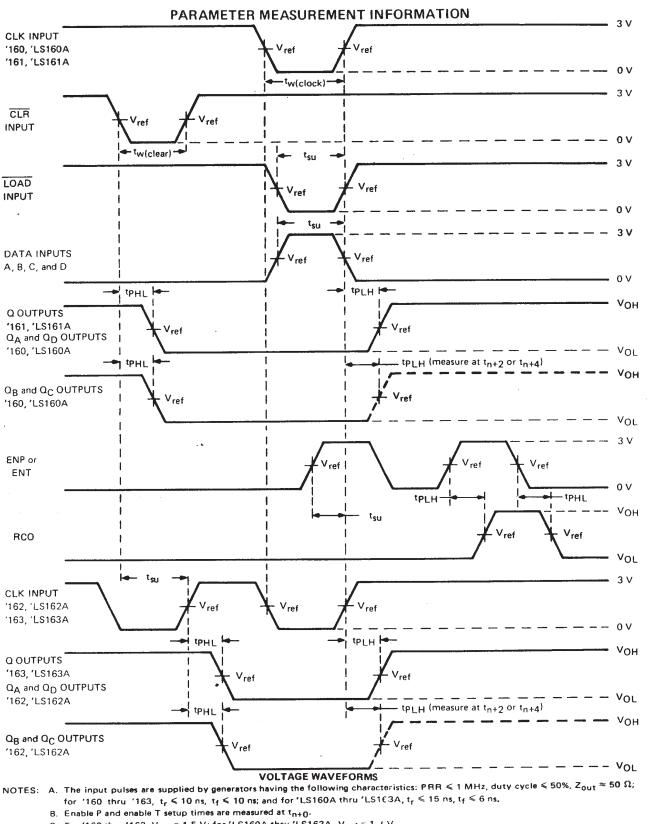
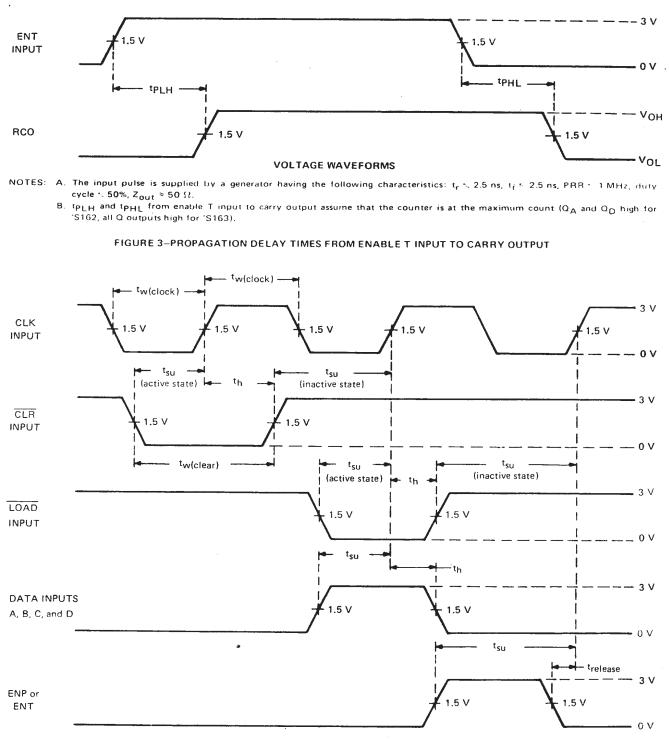

- NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, Z_{out} \approx 50 Ω ; for '160 thru '163, t_r \leq 10 ns, t_f \leq 10 ns; for 'LS160A thru 'LS163A t_r \leq 15 ns, t_f \leq 6 ns; and for 'S162, 'S163, t_r \leq 2.5 ns, t_f \leq 2.5 ns. Vary PRR to measure f_{max}.
 - B. Outputs Ω_D and carry are tested at t_{n+10} for '160, '162, 'LS160A, 'LS162A, and 'S162, and at t_{n+16} for '161, '163, 'LS161A, 'LS163A, and 'S163, where t_n is the bit time when all outputs are low.
 - C. For '160 thru '163, 'S162, and 'S163, V_{ref} = 1.5 V; for 'LS160A thru 'LS163A, V_{ref} = 1.3 V.

FIGURE 1-SWITCHING TIMES

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988


- C. For '160 thru '163, V_{ref} = 1.5 V; for 'LS160A thru 'LS163A, V_{ref} = 1.4 V.
 - FIGURE 2-SWITCHING TIMES

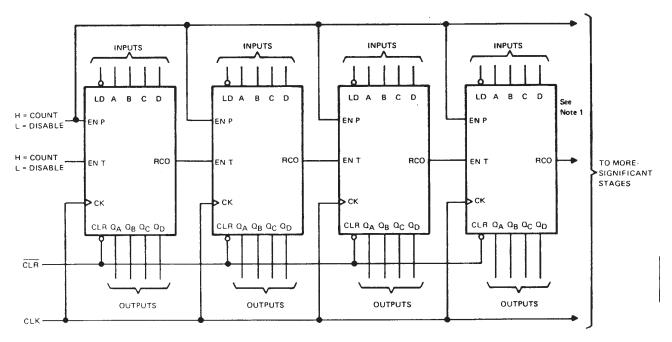
SN54S162, SN54S163, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTE A: The input pulses are supplied by generators having the following characteristics: $t_r = 2.5$ ns, $t_f = 2.5$ ns, PRR = 1.MHz, duty cycle = 50%, $Z_{out} \approx 50$ Ω.


FIGURE 4-PULSE WIDTHS, SETUP TIMES, HOLD TIMES, AND RELEASE TIME

SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

TYPICAL APPLICATION DATA

This application demonstrates how the ripple mode carry circuit (Figure 1) and the carry-look-ahead circuit (Figure 2) can be used to implement a high-speed N-bit counter. The '160, '162, 'LS160A, 'LS162A, or 'S162 will count in BCD and the '161, '163, 'LS161A, 'LS163A, or 'S163 will count in binary. When additional stages are added the fMAX decreases in Figure 1, but remains unchanged in Figure 2.

N-BIT SYNCHRONOUS COUNTERS

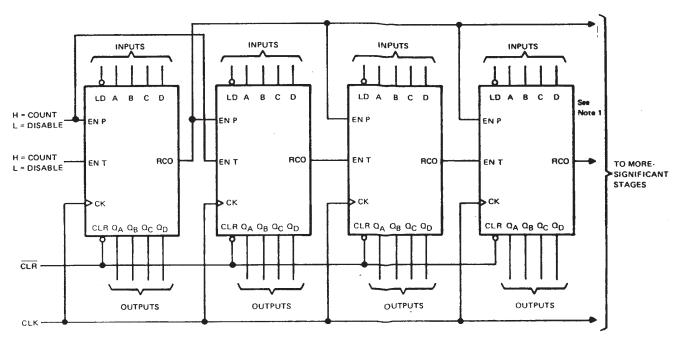


FIGURE 1

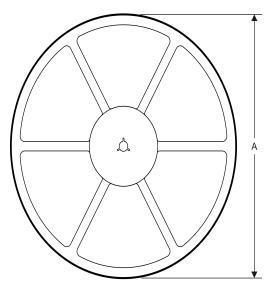
SN54160 THRU SN54163, SN54LS160A THRU SN54LS163A, SN54S162, SN54S163, SN74160 THRU SN74163, SN74LS160A THRU SN74LS163A, SN74S162, SN74S163 SYNCHRONOUS 4-BIT COUNTERS

SDLS060 - OCTOBER 1976 - REVISED MARCH 1988

TYPICAL APPLICATION DATA

 $f_{MAX} = 1/(CLK \text{ to RCO } t_{PLH}) + (ENP t_{su})$

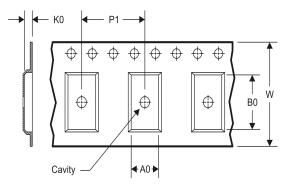
FIGURE 2


PACKAGE MATERIALS INFORMATION

www.ti.com

TAPE AND REEL INFORMATION

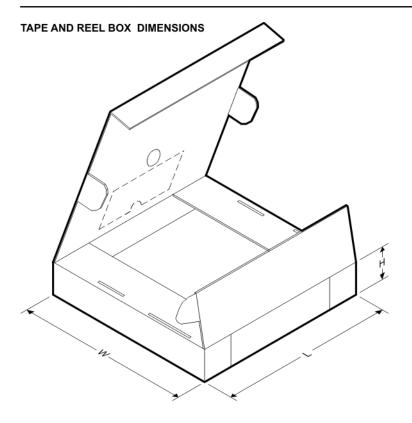
REEL DIMENSIONS


TEXAS INSTRUMENTS

TAPE AND REEL INFORMATION

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS161ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS161ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS163ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS163ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS161ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS161ANSR	SO	NS	16	2000	367.0	367.0	38.0
SN74LS163ADR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS163ANSR	SO	NS	16	2000	367.0	367.0	38.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconnectivity		

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

SDLS068A - DECEMBER 1972 - REVISED OCTOBER 2001

'174, 'LS174, 'S174 . . . HEX D-TYPE FLIP-FLOPS '175, 'LS175, 'S175 . . . QUADRUPLE D-TYPE FLIP-FLOPS

- '174, 'LS174, 'S174 Contain Six Flip-Flops with Single-Rail Outputs
- '175, 'LS175, 'S175 Contain Four Flip-Flops with Double-Rail Outputs
- Three Performance Ranges Offered: See Table Lower Right
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications include: Buffer/Storage Registers Shift Registers

Pattern Generators

description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the '175, 'LS175, and 'S175 feature complementary outputs from each flipflop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

These circuits are fully compatible for use with most TTL circuits.

FUNCTION TABLE								
	(EACH FLIP-FLOP)							
INPUTS OUTPUTS								
CLEAR	D	٩	ā۲					
L L	x	х	L	н				
н	1	н	н	L				
н	1	L	L	н				
н	L	х	a ₀	₫ ₀				

H = high level (steady state)

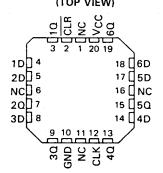
L = low level (steady state)

X = irrelevant

t = transition from low to high level

 Ω_0 = the level of Ω before the indicated steady-state

input conditions were established. † = '175, 'LS175, and 'S175 only

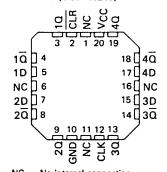

	TYPICAL	TYPICAL
TYPES	MAXIMUM	POWER
TTFES	CLOCK	DISSIPATION
	FREQUENCY	PER FLIP-FLOP
'174, '175	35 MHz	38 mW
'LS174, 'LS175	40 MHz	14 mW
'S174, 'S175	110 MHz	75 mW

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SN54174, SN54LS174, SN54S174 J OR W PACKAGE
SN74174 N PACKAGE
SN74LS174, SN74S174, D OR N PACKAGE

(TOP VIEW) 10 2 15 60 1D 🛛 3 14 🗌 6D 13 0 5D 2D 4 20 5 12 50 3D 🗌 6 11 🗌 4D 30 07 10 40 GND 8 9 CLK

SN54LS174, SN54S174 . . . FK PACKAGE (TOP VIEW)



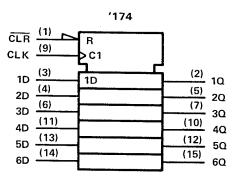
SN54175, SN54LS175, SN54S175...J OR W PACKAGE SN74175...N PACKAGE

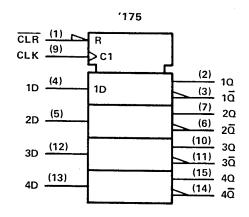
SN74LS175, SN74S175...D OR N PACKAGE (TOP VIEW)

•		•
	hτ	
10[2	15 40
١āĽ	3	14 🛛 40
1 D 🗌	4	13 🗍 4 D
2 D 🗌	5	12 🗍 3 D
2 <u>0</u> [6	11]] 30
20]7	10 🛛 30.
GND	8	9 СLК

SN54LS175, SN54S175... FK PACKAGE (TOP VIEW)

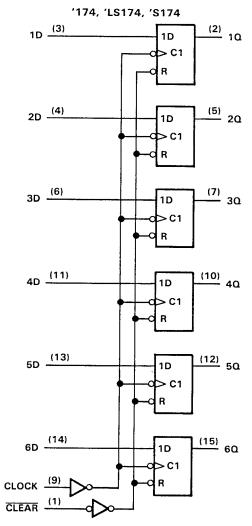
NC - No internal connection


Copyright © 2001, Texas Instruments Incorporated

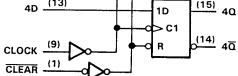

INSTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

SDLS068A – DECEMBER 1972 – REVISED OCTOBER 2001


logic symbols[†]

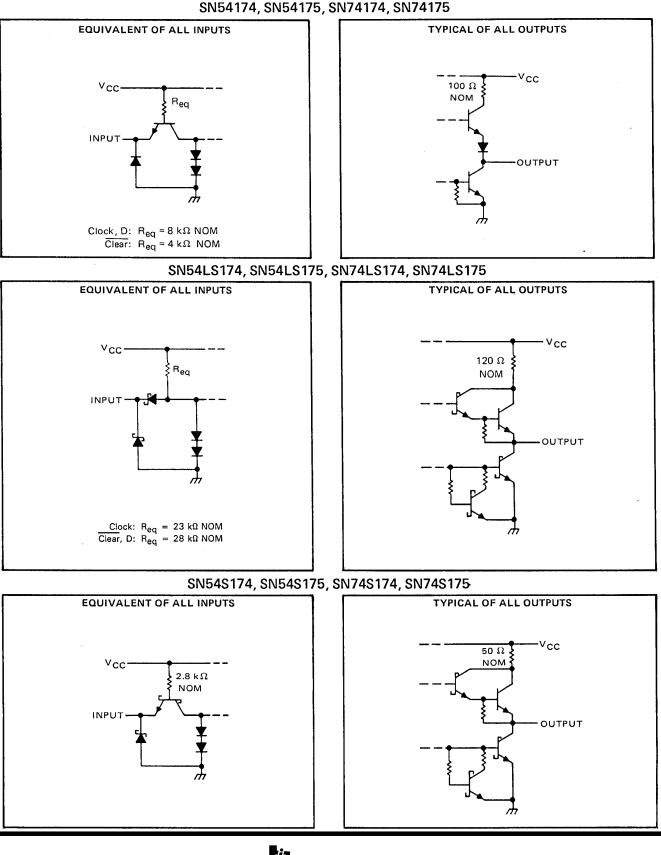
[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.


logic diagrams (positive logic)

1D <u>(4)</u> <u>(2)</u> 10 1D > C1<u>(3)</u> 10 R (7) 20 (5) 2D 1D > C1 <u>(6)</u> 20 R 3D (12) (10) 30 1D ⊳cı <u>(11)</u> 30 R (15) 40 4D (13) 1D

'175, 'LS175, 'S175

۰.


Pin numbers shown are for D, J, N, and W packages.

SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 **HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR**

SDLS068A - DECEMBER 1972 - REVISED OCTOBER 2001

schematics of inputs and outputs

SN54174, SN54175, SN74174, SN74175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

Supply voltage, V _{CC} (see Note 1) 7 V Input voltage 5.5 V Operating free-air temperature range: SN54174, SN54175 Circuits SN24174, SN54175 Circuits -55°C to 125°C OPERATING free-air temperature range: SN54174, SN54175 Circuits		
Supply voltage, V _{CC} (see Note 1)		
Operating free-air temperature range: SN54174, SN54175 Circuits		
SN74174, SN74175 Circuits	\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 0° C to 70° C	
Storage temperature range	$-65^{\circ}C$ to $150^{\circ}C$	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54	SN54174, SN54175			SN74174, SN74175			
		MIN NOM MAX		MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V	
High-level output current, IOH				-800			-800	μA	
Low-level output current, IOL				16	[16	mA	
Clock frequency, fclock		0		25	0		25	MHz	
Width of clock or clear pulse, tw		20			20			ns	
Cotum time t	Data input	20			20			ns	
Setup time, t _{su}	Clear inactive-state	25			25			ns	
Data hold time, t _h		5			5			ns	
Operating free-air temperature, TA		-55		125	0		70	°C	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER TEST CONDITIONS [†]			MIN	ΤΥΡ ‡	MAX	UNIT
VIH	High-level input voltage		2			V	
VIL	Low-level input voltage					0.8	V
VIK	Input clamp voltage	$V_{CC} = MIN, I_I = -12$	mA			-1.5	V
V _{ОН}	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V _{IL} = 0.8 V, I _{OH} = -		2.4	3.4		v
VOL	Low-level output voltage		$V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, I_{OL} = 16 mA$			0.4	v
-μ	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5	V			1	mA
Чн	High-level input current	V _{CC} = MAX, V _I = 2.4	V			40	μA
կլ	Low-level input current	$V_{CC} = MAX, V_I = 0.4$	V			-1.6	mA
1.			SN54'	-20		-57	
los	DS Short-circuit output current §	V _{CC} = MAX	SN74'	-18		-57	mA
1	Current .		2 '174		45	65	
1CC	Supply current	V _{CC} = MAX, See Note	2 /175		30	45	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

[‡]All typical values are at V_{CC} = 5 V, T_A = 25°C.

\$ Not more than one output should be shorted at a time.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to clock.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
f _{max}	Maximum clock frequency		25	35		MHz
	Propagation delay time, low-to-high-level output from clear			16	25	
^t PLH	(SN54175, SN74175 only)	$C_L = 15 \text{pF},$		10	25	ns
^t PHL	Propagation delay time, high-to-low-level output from clear	R _L = 400 Ω, 		23	35	ns
^t PLH	Propagation delay time, low-to-high-level output from clock	See Note 3		20	30	ns
^t PHL	Propagation delay time, high-to-low-level output from clock			24	35	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54LS174, SN54LS175, SN74LS174, SN74LS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

SDLS068A - DECEMBER 1972 - REVISED OCTOBER 2001

absolute maximum ratings over operating free-air temperature range	(un	le	SS	ot	he	rw	ise	e n	101	tec	1)			÷	
Supply voltage, V _{CC} (see Note 1)		•						•			•		•	•	7 V
Input voltage															
Operating free-air temperature range: SN54LS174, SN54LS175 Circuits							•		•			-55	5°C	c to	125°C
SN74LS174, SN74LS175 Circuits			. '										0°	'C to	o 70°C
Storage temperature range		•	•	•	•	•	•	•	•	•		-65	5°C	C to	150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54LS174			SN			
		SI	V54LS1	75	SN	UNIT		
		MIŅ	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	······································			-400			-400	μA
Low-level output current, IOL	······································			4			8	mA
Clock frequency, fclock		0		30	0		30	MHz
Width of clock or clear pulse, t _w		20			20			ns
Sotup time t	Data input	20			20			ns
Setup time, t _{su}	Clear inactive-state	25			25			ns
Data hold time, th		5			5			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TES	CONDITIONS	ł	-	N54LS1 N54LS1			174 175	UNIT	
_		1			MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2		~~~	V
VIL	Low-level input voltage						0.7			0.8	V
٧ _{IK}	Input clamp voltage	V _{CC} = MIN,	l ₁ = -18 mA				-1.5			-1.5	V
V _{OH}	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V, I _{OH} = -400 μA	λ	2.5	3.5		2.7	3.5		v
Vol	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max		IOL = 4 mA		0.25	0.4		0.25 0.35	0.4	V
łı	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	mA
Чн	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μA
կլ	Low-level input current	V _{CC} = MAX,	V ₁ = 0.4 V	· · · · · · · · · · · · · · · · · · ·	1		-0.4			-0.4	mA
los	Short-circuit output current §	V _{CC} = MAX			-20		100	-20		-100	mA
Icc	Supply current	Vcc = MAX,	See Note 2	'LS174		16	26		16	26	mA
				'LS175		11	18		11	18	

¹ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

 \ddagger All typical values are at V_{CC} = 5 V, T_A = 25°C.

\$Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to clock.

switching characteristics, V_{CC} = 5 V, T_A = 25°C

PABAMETER	TEST CONDITIONS		'LS174					
FANAMETEN	TEST CONDITIONS	MIN	түр	MAX	MIN	ТҮР	MAX	UNIT
f _{max} Maximum clock frequency		30	40		30	40		MHz
tPLH Propagation delay time, low-to-high-level output from clear	C _L = 15 pF,					20	30	ns
tpHL Propagation delay time, high-to-low-level output from clear	$R_{\rm L} = 2 k \Omega,$		23	35	t	20	30	ns
tPLH Propagation delay time, low-to-high-level output from clock	See Note 3		20	30		13	25	ns
tphL Propagation delay time, high-to-low-level output from clock	1		21	30		16	25	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54S174, SN54S175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

SDLS068A - DECEMBER 1972 - REVISED OCTOBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	7 V
Input voltage	5.5 V
Operating free-air temperature range: SN54S174, SN54S175 Circuits	$55^{\circ}C$ to $125^{\circ}C$
SN74S174, SN74S175 Circuits	$ 0^{\circ}C to 70^{\circ}C$
Storage temperature range	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		SN54S174, SN54S175			SN74S	174, SN	74S175	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH	······			-1			-1	mA
Low-level output current, IOL				20			20	mA
Clock frequency, fclock		0		75	0		75	MHz
Pulso width t	Clock	7			7			
Pulse width, t _w	Clear	10			10			ns
Satura tima t	Data input	5			5			
Setup time, t _{su}	Clear inactive-state	5			5			ns
Data hold time, t _h		3			3			ns
Operating free-air temperature, T _A		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]		MIN	түр‡	MAX	UNIT
VIH	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
VIK	Input clamp voltage	$V_{CC} = MIN, I_I = -18 \text{ mA}$				-1.2	V
		$V_{CC} = MIN, V_{1H} = 2V,$	SN54S'	2.5	3.4		v
VOH	High-level output voltage	V _{IL} = 0.8 V, I _{OH} = -1 mA	SN74S'	2.7	3.4		V
M		$V_{CC} = MIN, V_{IH} = 2 V,$	• • • • • • • • • • • • • • • • • • •			0.5	V
VOL	Low-level output voltage	V _{IL} = 0.8 V, I _{OL} = 20 mA				0.5	V
lj –	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V				1	mA
ЧΗ	High-level input current	V _{CC} = MAX, V ₁ = 2.7 V				50	μA
ΊL	Low-level input current	V _{CC} = MAX, V _I = 0.5 V				-2	mA
los	Short-circuit output current §	V _{CC} = MAX		-40		-100	mA
1	Supply support	No MAX - See Nete 2	'174		90	144	
^I CC	Supply current	V _{CC} = MAX, See Note 2	'17 5		60	96	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$. [§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, ICC is measured after a momentary ground, then 4.5 V, is applied to clock.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	түр	MAX	UNIT
f _{max}	Maximum clock frequency		75	110		MHz
₽LH	Propagation delay time, low-to-high-level $\overline{\Omega}$ output from clear (SN54S175, SN74S175 only)	С _L = 15 рF,		10	15	ns
t₽HL	Propagation delay time, high-to-low-level Q output from clear	$R_{L} = 280 \Omega,$ See Note 3		13	22	ns
^t PLH	Propagation delay time, low-to-high-level output from clock	See Note 3		8	12	ns
^t PHL	Propagation time, high-to-low-level output from clock			11.5	17	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

www.ti.com

7-Jun-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
JM38510/01702BEA	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Replaced by JM38510/30107BEA
JM38510/01702BFA	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI	Replaced by JM38510/30107BFA
JM38510/07105BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/07105BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/07106BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30106B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
JM38510/30106BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30106BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30107B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
JM38510/30107BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30107BFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30107SEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
JM38510/30107SFA	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN54175J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Replaced by SN54LS175.
SN54LS174J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN54LS175J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN54S174J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN54S175J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SN74174N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Replaced by SN74LS174
SN74175N	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Samples Not Available
SN74175N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Samples Not Available
SN74LS174D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS174DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS174DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS174DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples

7-Jun-2010

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74LS174DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS174DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS174J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS174N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SN74LS174N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Samples Not Availabl
SN74LS174NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SN74LS174NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS174NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS174NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS175D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS175DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS175DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS175DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS175DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS175DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS175J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Samples Not Availab
SN74LS175N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SN74LS175N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Samples Not Availab
SN74LS175NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SN74LS175NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74LS175NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples

www.ti.com

7-Jun-2010

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74LS175NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S174J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Samples Not Available
SN74S174N	NRND	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Samples Not Available
SN74S174N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Samples Not Available
SN74S174NE4	NRND	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Samples Not Available
SN74S175D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S175DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S175DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
SN74S175DR	OBSOLETE	SOIC	D	16		TBD	Call TI	Call TI	Samples Not Available
SN74S175N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SN74S175N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	Samples Not Available
SN74S175NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Purchase Samples
SNJ54175J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI	Replaced by SNJ54LS175J
SNJ54175W	OBSOLETE	CFP	W	16		TBD	Call TI	Call TI	Replaced by SNJ54LS175W
SNJ54LS174FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
SNJ54LS174J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54LS174W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54LS175FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
SNJ54LS175J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54LS175W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54S174FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
SNJ54S174J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54S174W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54S175FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	Purchase Samples
SNJ54S175J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples
SNJ54S175W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	Purchase Samples

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

PACKAGE OPTION ADDENDUM

7-Jun-2010

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

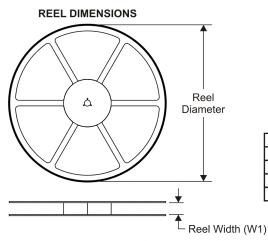
OTHER QUALIFIED VERSIONS OF SN54175, SN54LS174, SN54LS175, SN54LS175-SP, SN54S174, SN54S175, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 :

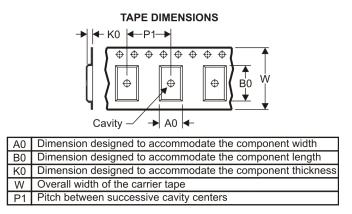
• Catalog: SN74175, SN74LS174, SN74LS175, SN54LS175, SN74S174, SN74S175

• Military: SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175

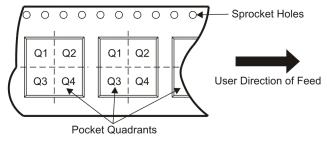
• Space: SN54LS175-SP

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

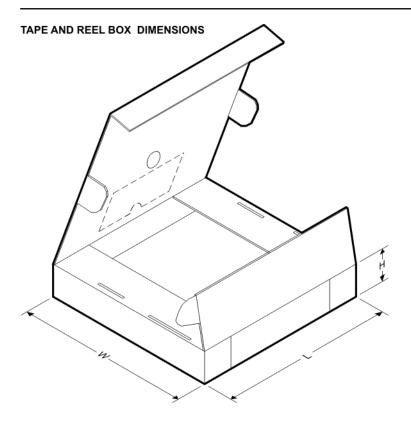

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS174DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS174NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS175DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS175NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

29-Jul-2009

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS174DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS174NSR	SO	NS	16	2000	346.0	346.0	33.0
SN74LS175DR	SOIC	D	16	2500	333.2	345.9	28.6
SN74LS175NSR	SO	NS	16	2000	346.0	346.0	33.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

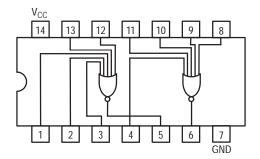
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.


TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated

Dual 5-Input NOR Gate

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA

ON Semiconductor Formerly a Division of Motorola http://onsemi.com

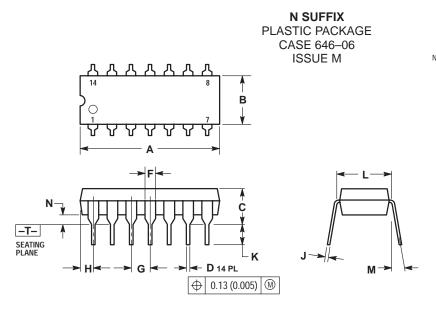
LOW POWER SCHOTTKY

PLASTIC N SUFFIX CASE 646

ORDERING INFORMATION

Device	Package	Shipping	
SN74LS260N	14 Pin DIP	2000 Units/Box	
SN74LS260D	14 Pin	2500/Tape & Reel	

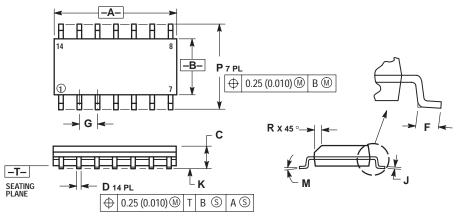
			Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Tes	t Conditions
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	2.7	3.5		V	$V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH}$ or V_{IL} per Truth Table	
V _{OL} Output LOW Voltage			0.25	0.4	V	l _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
	Output LOVV Voitage		0.35	0.5	V	l _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
1				20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V
lΉ	Input HIGH Current			0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
IIL	Input LOW Current			-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$	
I _{OS}	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX	
I _{CC}	Power Supply Current Total, Output HIGH			4.0	mA	V _{CC} = MAX	
	Total, Output LOW			5.5			


DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (T_A = 25° C)

		Limits				
Symbol	Parameter	Min	Тур	Мах	Unit	Test Conditions
t _{PLH}	Turn-Off Delay, Input to Output		5.0	15	ns	V _{CC} = 5.0 V
t _{PHL}	Turn-On Delay, Input to Output		6.0	15	ns	C _L = 15 pF


PACKAGE DIMENSIONS

NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 DIMENSION B DOES NOT INCLUDE MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.715	0.770	18.16	18.80	
В	0.240	0.260	6.10	6.60	
С	0.145	0.185	3.69	4.69	
D	0.015	0.021	0.38	0.53	
F	0.040	0.070	1.02	1.78	
G	0.100	BSC	2.54 BSC		
Н	0.052	0.095	1.32	2.41	
J	0.008	0.015	0.20	0.38	
К	0.115	0.135	2.92	3.43	
L	0.290	0.310	7.37	7.87	
Μ		10°		10°	
N	0.015	0.039	0.38	1.01	

D SUFFIX PLASTIC SOIC PACKAGE CASE 751A-03 **ISSUE F**

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

CONTROLLING DIMENSION, MILLINETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	8.55	8.75	0.337	0.344	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
Μ	0 °	7°	0 °	7°	
Р	5.80	6.20	0.228	0.244	
R	0.25	0.50	0.010	0.019	

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

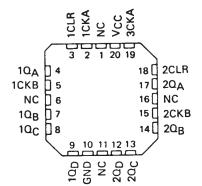
Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

SN54390, SN54LS390, SN54393, SN54LS393 SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS SDLS107 – OCTOBER 1976 – REVISED MARCH 1988

- Dual Versions of the Popular '90A, 'LS90 and '93A, 'LS93
- '390, 'LS390 . . . Individual Clocks for A and B Flip-Flops Provide Dual ÷ 2 and ÷ 5 Counters
- '393, 'LS393 . . . Dual 4-Bit Binary Counter with Individual Clocks
- All Have Direct Clear for Each 4-Bit Counter
- Dual 4-Bit Versions Can Significantly Improve System Densities by Reducing Counter Package Count by 50%
- Typical Maximum Count Frequency . . . 35 MHz
- Buffered Outputs Reduce Possibility of Collector Commutation

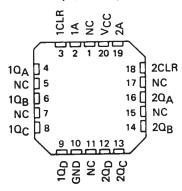

description

Each of these monolithic circuits contains eight master-slave flip-flops and additional gating to implement. two individual four-bit counters in a single package. The '390 and 'LS390 incorporate dual divide-by-two and divide-by-five counters, which can be used to implement cycle lengths equal to any whole and/or cumulative multiples of 2 and/or 5 up to divide-by-100. When connected as a bi-quinary counter, the separate divide-by-two circuit can be used to provide symmetry (a square wave) at the final

output stage. The '393 and 'LS393 each comprise two independent four-bit binary counters each having a clear and a clock input. N-bit binary counters can be implemented with each package providing the capability of divide-by-256. The '390, 'LS390, '393, and 'LS393 have parallel outputs from each counter stage so that any submultiple of the input count frequency is available for system-timing signals.

Series 54 and Series 54LS circuits are characterized for operation over the full military temperature range of -55° C to 125°C; Series 74 and Series 74LS circuits are characterized for operation from 0°C to 70°C. SN54390, SN54LS390 . . . J OR W PACKAGE SN74390 . . . N PACKAGE SN74LS390 . . . D OR N PACKAGE (TOP VIEW) 1CKA 15 2CKA 1CLR 2 1QA []3 14 2CLR 1CKB 13 20A 12 2CKB 1QB [] 5 11 🛛 20B 1QC [6 10 20C 10_D [] 7 GND 8 9 20D

> SN54LS390 . . . FK PACKAGE (TOP VIEW)


SN54393, SN54LS393 . . . J OR W PACKAGE SN74393 . . . N PACKAGE SN74LS393 . . . D OR N PACKAGE

(TOP VIEW)						
1A						
1CLR		13 2A				
10 _A		12 2CLR				
10 _B	□₄	11 20A				
1QC	5	10 20B				
10 _D		9 20 C				

8] 2QD

SN54LS393 . . . FK PACKAGE (TOP VIEW)

GND 🗖 7

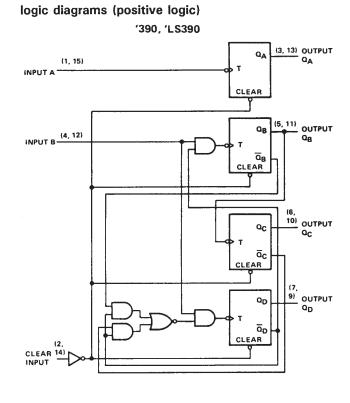
NC - No internal connection

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

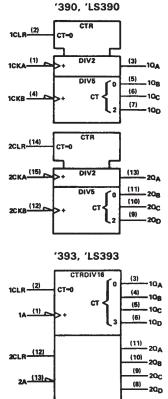
Copyright © 1988, Texas Instruments Incorporated

SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

BCD CO (EAC	- · ·		DUEI (ER)								
COLINIT		ουτ	PUT								
COUNT QD QC QB QA											
0	L	L	L	L							
1	L	Ł	L	н							
2	L	L	н	L							
3	L	L	н	н							
4	L	н	L	L							
5	L	н	L	н							
6	L	н	н	L							
7	L	н	н	н							
8	8 H L L L										
9	н	L	L	Н							


FUNG	FUNCTION TABLES												
4	'390, 'LS390												
BI-QUINARY (5-2)													
(EA	(EACH COUNTER)												
(See Note B)													
OUTPUT													
COUNT QA QD QC QB													
0	OLLLL												
1	L	L	L	н									
2	L	L	н	L									
3	L	L	н	н									
4	L	н	L	L									
5	н	L	L	L									
6	н	L	L	н									
7	н	L	Н	L									
8	н	L	н	н									
9	н	н	L	L									

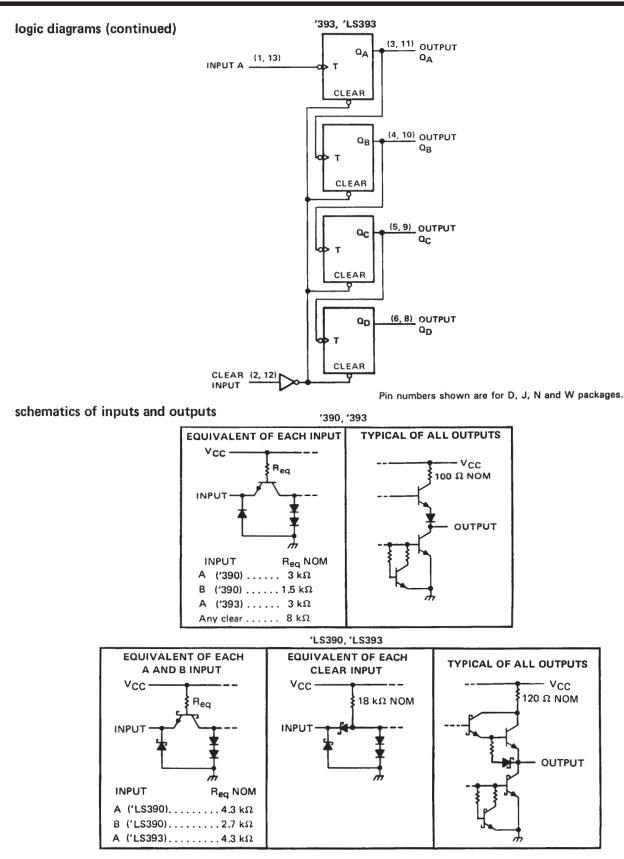
COUNT SEQUENCE (EACH COUNTER) OUTPUT COUNT QB QA QD QC 0 L L L L н 1 L L L н L 2 L L 3 L L н н н L L 4 L 5 н L н L 6 L н н L н 7 н н L 8 н L L L 9 Н L Н L н L 10 н L 11 Н L н н 12 н н L L н н н L 13 14 н н н L. н н н н 15


'393, 'LS393

NOTES: A. Output Q_A is connected to input B for BCD count. B. Output Q_D is connected to input A for bi-quinary count.

C. H = high level, L = low level.

logic symbols[†]



[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Input voltage	
Operating free-air temperature range: SN54390, SN54393	
	0°C to 70°C
	-65° C to 150° C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

			SN5439 SN5439			SN7439 SN7439		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			·	-800			800	μA
Low-level output current, IOL				16			16	mA
Count from one f	A input	0		25	0		25	MHz
Count frequency, f _{count}	B input	0		20	0		20	
	A input high or low	20			20			
Pulse width, t _w	B input high or low	25			25			ns
	Clear high	20			20			1
Clear inactive-state setup time, t _{su}	÷	25			25↓			ns
Operating free-air temperature, TA		-55		125	0		70	°C

 \downarrow The arrow indicates that the falling edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	DADAMETEO		TEST CON	DITIONS		′ 390			'393		
	PARAMETER		TEST CONI	DITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.8			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN, I	i ≖ –12 mA			-1.5			-1.5	V
v _{он}	High-level output voltage		V _{CC} = MIN, V V _{IL} = 0.8 V, I		2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage		$V_{CC} = MIN, V_{IL} = 0.8 V, I_{e}$	/ _{1H} = 2 V,		0.2	0.4		0.2	0.4	v
11	Input current at maximum input voltage		V _{CC} = MAX, V	/ ₁ = 5.5 V			1			1	mA
		Clear					40			40	
Чн	High-level input current	Input A	V _{CC} = MAX, V	/1 = 2.4 V			80			80	μA
		Input B					120				
		Clear					1			-1	
hL	Low-level input current	Input A	V _{CC} = MAX, V	/ i = 0.4 V			-3.2			-3.2	mA
		Input B					-4.8				
1	Chart airquit autnut aurrant 8		Vee - MAX	SN54'	-20		57	-20		-57	mA
los	Short-circuit output current §		V _{CC} = MAX	SN74'	-18		-57	-18		-57	
ICC	Supply current		V _{CC} = MAX, S	iee Note 2		42	69		38	64	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

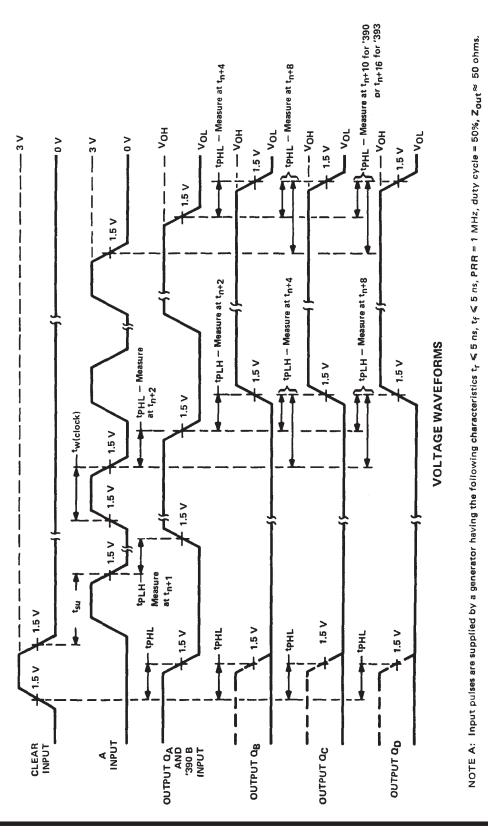
[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

§ Not more than one output should be shorted at a time.

The Q_A outputs of the '390 are tested at I_{OL} = 16 mA plus the limit value for I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability.

NOTE 2: I_{CC} is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

SDLS107 - OCTOBER 1976 - REVISED MARCH 1988


	FROM	TO	TEAT CONDITIONS		'390			' 393		UNIT
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	түр	MAX	
	А	QA		25	35		25	35		MHz
fmax	В	QB		20	30					141112
tplH		0]		12	20		12	20	ns
^t PHL	A	QA			13	20		13	20	113
^t PLH		Q _C of '390	C _L = 15 pF,		37	60		40	60	ns
^t PHL.	A	Q _D of '393	R _L = 400 Ω,		39	60		40	60	113
^t PLH		0	See Note 3		13	21				ns
tPHL	В	QB	and		14	21				115
tpLH	в	0.	Figure 1		24	39				ns
^t PHL		α _c			26	39				
tPLH	в	0-]		13	21				ns
^t PHL		۵ _D			14	21				113
tPHL	Clear	Any]		24	39		24	39	ns

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

SN54390, SN54LS390, SN54393, SN54LS393 SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

FIGURE 1

SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC} (see Note 1)	
Clear input voltage	
Any A or B clock input voltage	
Operating free-air temperature range: SN54LS390, SN54LS393	-55° C to 125° C
SN74LS390, SN74LS393	3 0°C to 70°C
Storage temperature range	

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

		-	N54LS3 N54LS3			N74LS3 N74LS3		UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}		4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH				-400			-400	μA
Low-level output current, IOL				4			8	mA
0	A input	0		25	0		25	MHz
Count frequency, f _{count}	B input	0		12.5	0		12.5	IVIF12
and an obligation from the statement	A input high or low	20			20			
Pulse width, t _w	B input high or low	40			40			ns
	Clear high	20			20]
Clear inactive-state setup time, t _{su}	······································	25‡			25↓			ns
Operating free-air temperature, TA		55		125	0		70	°C

¹ The arrow indicates that the falling edge of the clock pulse is used for reference.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

							SN54L	5'		SN74L	S'	UNIT
	PARAMETER		TES	T CONDITIONS		MIN	түр‡	MAX	MIN	түр‡	MAX	UNIT
VIH	High-level input voltage					2			2			V
VIL	Low-level input voltage							0.7			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	l _l = –18 mA				-1.5			-1.5	V
v _{он}	High-level output voltage		V _{CC} = MIN, VIL = VILmax,	$V_{\rm IH} = 2 V,$ $I_{\rm OH} = -400 \ \mu A$		2.5	3.4		2.7	3.4		v
	1		V _{CC} = MIN,	VIH = 2 V,	IOL = 4 mA¶		0.25	0.4		0.25	0.4	v
VOL	Low-level output voltage		V _{IL} = 0.8 V,		10L = 8 mA¶					0.35	0.5	
		Clear			V ₁ = 7 V			0.1			0.1	
lη –	Input current at maximum input voltage	Input A	V _{CC} = MAX		V1 = 5.5 V			0.2			0.2	mA
	maximum input vortage	Input B			V1 - 5.5 V			0.4			0.4	
		Clear						0.02			0.02	1
Чн	High-level input current	Input A	V _{CC} = MAX,	V _I = 2.7 V				0.1			0.1	mA
		Input B						0.2			0.2	
[Clear						-0.4			0.4	1
41	Low-level input current	Input A	V _{CC} = MAX,	V ₁ = 0.4 V				-1.6			-1.6	mA
		Input B						-2.4			-2.4	L
IOS	Short-circuit output cur	rent§	V _{CC} = MAX			-20		-100	-20		-100	mA
	Currely evenent		V _{CC} = MAX,		'LS390		15	26		15		mA
1 cc	Supply current		See Note 2		'LS393		15	26		15	26	

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

The QA outputs of the 'LS390 are tested at IOL = MAX plus the limit value for IIL for the clock B input. This permits driving the clock B input while maintaining full fan-out capability.

NOTE 2: ICC is measured with all outputs open, both clear inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.

SN54390, SN54LS390, SN54393, SN54LS393 SN74390, SN74LS390, SN74393, SN74LS393 DUAL 4-BIT DECADE AND BINARY COUNTERS SDLS107 - OCTOBER 1976 - REVISED MARCH 1988

switching characteristics, V_{CC} = 5 V, $T_A = 25^{\circ}C$

DADAMETED	FROM	то			'LS390			'LS393		
PARAMETER	(INPUT)	(OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	MIN	түр	MAX	UNIT
£	A	QA		25	35		25	35		MHz
f _{max}	В	QB]	12.5	20					WHZ
^t PLH	A	0.			12	20		12	20	
^t ₽HL	1 ^	QA			13	20		13	20	ns
^t PLH	A	Q _C of 'LS390	C _L = 15 pF,		37	60		40	60	
^t PHL		Q _D of 'LS393	$R_{L} = 2 k\Omega,$		39	60		40	60	ns
^t PLH	в	0-	See Note 4 and Figure 2		13	21				
^t PHL	1 ^D	α _B			14	21				ns
^t PLH	в	0.5			24	39				
^t ₽HL	1	α _C			26	39				ns
^t PLH	в	0-			13	21				
^t PHL		٥D			14	21				ns
^t ₽HL	Clear	Any			24	39		24	39	ns

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

PARAMETER MEASUREMENT INFORMATION

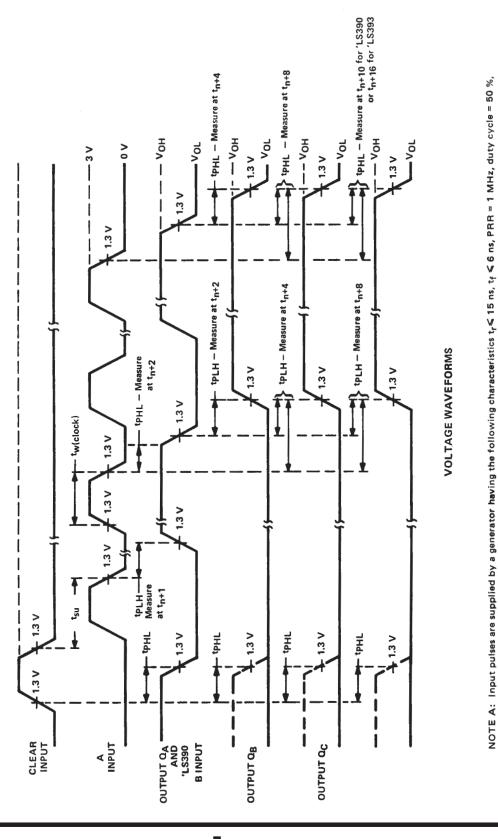


FIGURE 2

 $Z_{out} \approx 50 \text{ ohms.}$

25-Jan-2012

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
7802601EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Call TI	
7802601FA	ACTIVE	CFP	W	16	1	TBD	Call TI	Call TI	
7802601FA	ACTIVE	CFP	W	16	1	TBD	Call TI	Call TI	
JM38510/32701B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
JM38510/32701B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
JM38510/32701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
JM38510/32701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
JM38510/32702B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
JM38510/32702B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
JM38510/32702BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
JM38510/32702BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
JM38510/32702BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	
JM38510/32702BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	
JM38510/32702SCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
JM38510/32702SCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
JM38510/32702SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	
JM38510/32702SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	
M38510/32701B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
M38510/32701B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
M38510/32701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
M38510/32701BEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
M38510/32702B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
M38510/32702B2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
M38510/32702BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
M38510/32702BCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
M38510/32702BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	
M38510/32702BDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	
M38510/32702SCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
M38510/32702SCA	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
M38510/32702SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
M38510/32702SDA	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	
SN54393J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	
SN54393J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	
SN54LS390J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
SN54LS390J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
SN54LS393J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
SN54LS393J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
SN74390N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	
SN74390N	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI	
SN74393N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	
SN74393N	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	
SN74393N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	
SN74393N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	
SN74LS390D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN74LS390N	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN74LS390N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	
SN74LS390N3	OBSOLETE	PDIP	Ν	16		TBD	Call TI	Call TI	
SN74LS390NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN74LS390NE4	ACTIVE	PDIP	Ν	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN74LS390NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74LS390NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS390NSRG4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393D	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DE4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DRE4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393DRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	
SN74LS393J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74LS393N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN74LS393N	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN74LS393N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	
SN74LS393N3	OBSOLETE	PDIP	Ν	14		TBD	Call TI	Call TI	
SN74LS393NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN74LS393NE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
SN74LS393NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393NSR	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393NSRE4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN74LS393NSRG4	ACTIVE	SO	NS	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SNJ54393J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	
SNJ54393J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	
SNJ54393W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI	
SNJ54393W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI	
SNJ54LS390FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
SNJ54LS390FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
SNJ54LS390J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
SNJ54LS390J	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
SNJ54LS390W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	
SNJ54LS390W	ACTIVE	CFP	W	16	1	TBD	A42	N / A for Pkg Type	
SNJ54LS393FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
SNJ54LS393FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
SNJ54LS393J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
SNJ54LS393J	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
SNJ54LS393W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	

25-Jan-2012

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SNJ54LS393W	ACTIVE	CFP	W	14	1	TBD	A42	N / A for Pkg Type	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54393, SN54LS390, SN54LS393, SN54LS393-SP, SN74393, SN74LS390, SN74LS393 :

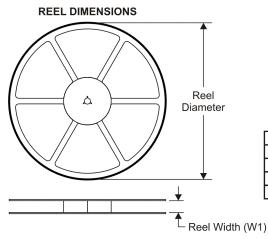
• Catalog: SN74393, SN74LS390, SN74LS393, SN54LS393

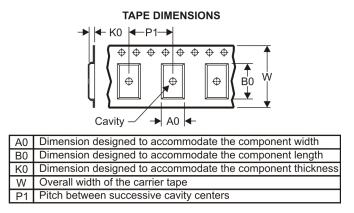
• Military: SN54393, SN54LS390, SN54LS393

• Space: SN54LS393-SP

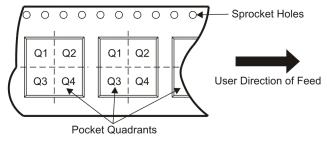
NOTE: Qualified Version Definitions:

PACKAGE OPTION ADDENDUM


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications
- Space Radiation tolerant, ceramic packaging and qualified for use in Space-based application

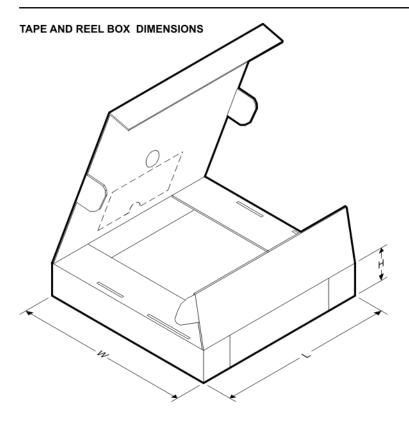

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS390NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74LS393DR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LS393NSR	SO	NS	14	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

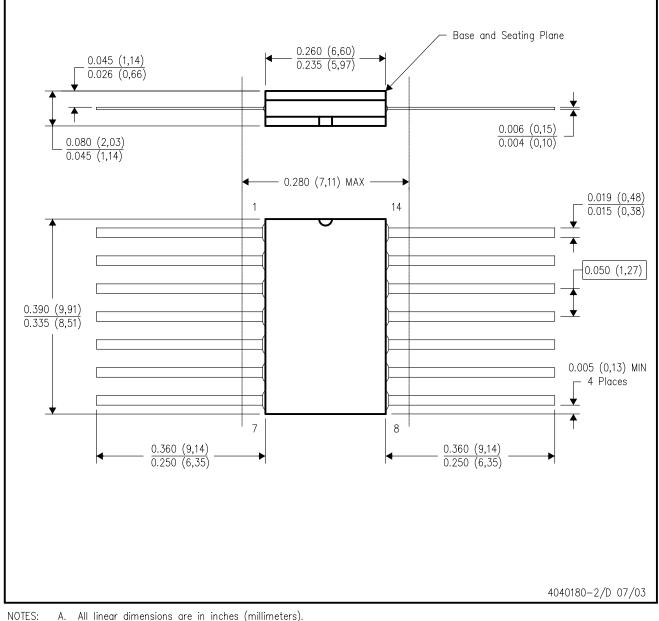
29-Jul-2011

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS390NSR	SO	NS	16	2000	346.0	346.0	33.0
SN74LS393DR	SOIC	D	14	2500	346.0	346.0	33.0
SN74LS393NSR	SO	NS	14	2000	346.0	346.0	33.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

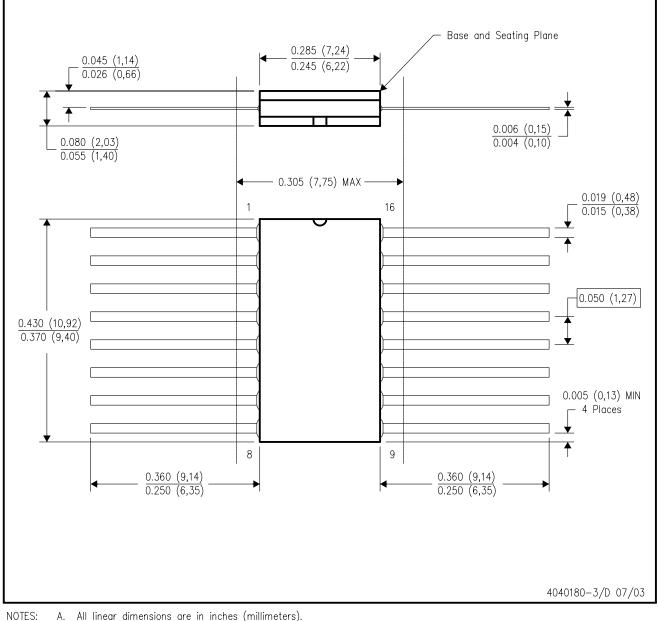


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F14)

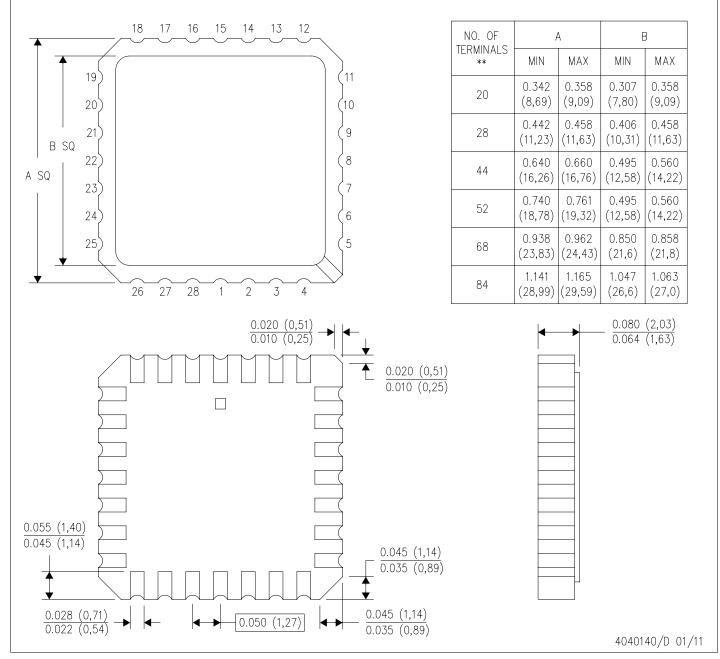
CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

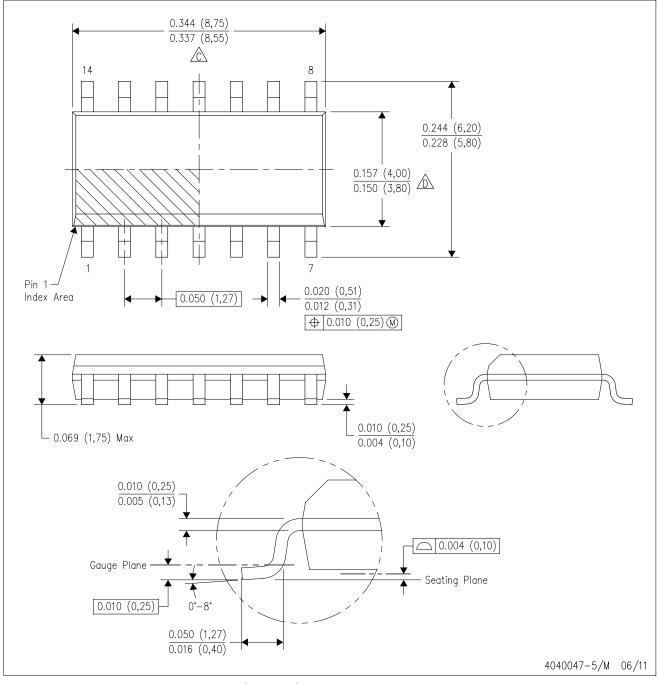
B. This drawing is subject to change without notice.

- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

N (R-PDIP-T**)

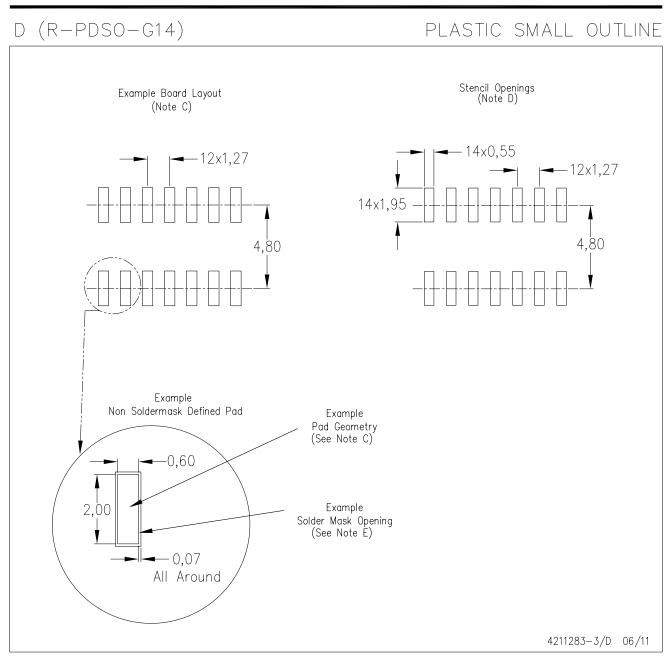
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/D 06/11

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) -16x0,55 - 14x1,27 -14x1,27 16x1,95 4,80 4,80 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 Example 2,00 Solder Mask Opening

(See Note E)

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

← 0,07 All Around

- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connectivity	www.ti.com/wirelessconnectivity		
	TI 505 0		

TI E2E Community Home Page

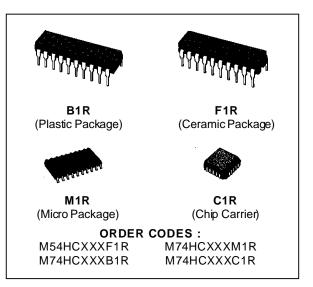
e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

M54/74HC563 M54/74HC573

OCTAL D-TYPE LATCH WITH 3 STATE OUTPUT HC563 INVERTING - HC573 NON INVERTING

- HIGH SPEED t_{PD} = 13 ns (TYP.) AT V_{CC} = 5 V
- LOW POWER DISSIPATION $I_{CC} = 4 \mu A (MAX.) AT T_A = 25 °C$
- HIGH NOISE IMMUNITY $V_{NIH} = V_{NIL} = 28 \% V_{CC} (MIN.)$
- OUTPUT DRIVE CAPABILITY
 15 LSTTL LOADS
- SYMMETRICAL OUTPUT IMPEDANCE $I_{OL} = |I_{OH}| = 6 \text{ mA (MIN.)}$
- BALANCED PROPAGATION DELAYS tPLH = tPHL
- WIDE OPERATING VOLTAGE RANGE
 V_{CC} (OPR) = 2 V TO 6 V
- PIN AND FUNCTION COMPATIBLE WITH 54/74LS563/573

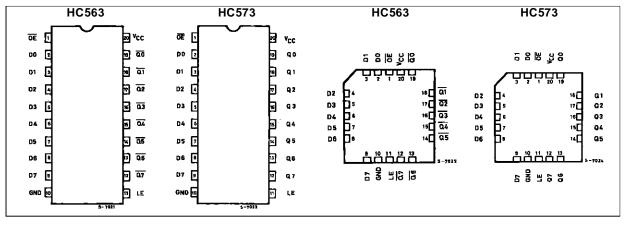

DESCRIPTION

The M54/74HC563 and M54HC573 are high speed CMOS OCTAL LATCH WITH 3-STATE OUTPUTS fabricated with in silicon gate C^2MOS technology.

These ICs archive the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

These 8 bit D-Type latches are controlled by a latch enable input (LE) and a output enable input (\overline{OE}).

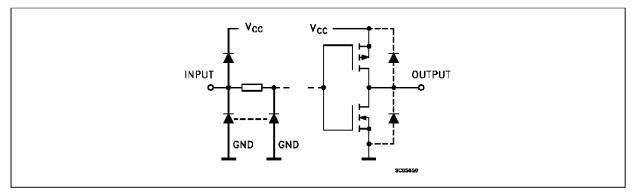
While the LE input is held at a high level, the Q outputs will follow the data input precisely or inversely. When the LE is taken low, the Q outputs will be latched precisely or inversely at the logic level



of D input data. While the \overline{OE} input is at low level, the eight outputs will be in a normal logic state (high or low logic level) and while high level the outpts will be in a high impedance state.

The application designer has a choise of combination of inverting and non inverting outputs.

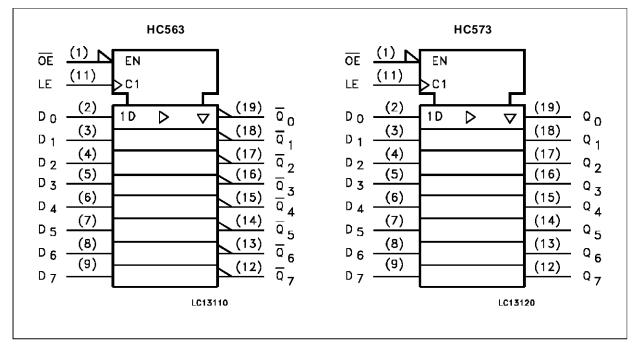
The three state output configuration and the wide choise of outline make bus organized system simple.


All inputs are equipped with protection circuits against discharge and transient excess voltage.

PIN CONNECTION (top view)

M54/M74HC563/573

INPUT AND OUTPUT EQUIVALENT CIRCUIT

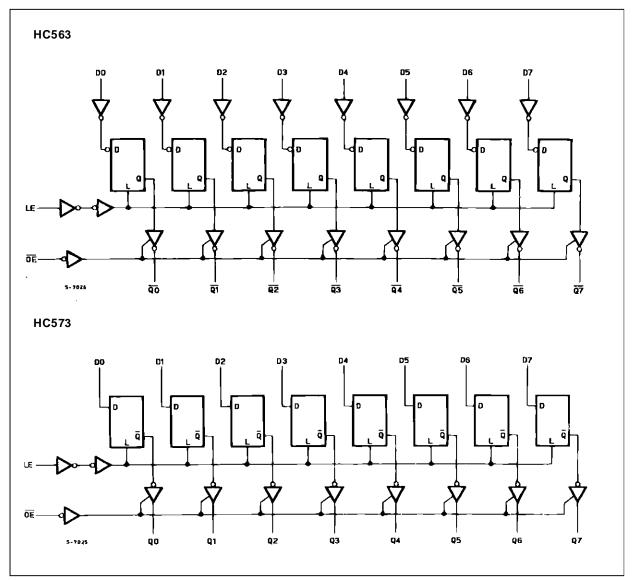

PIN DESCRIPTION (HC563)

PIN No	SYMBOL	NAME AND FUNCTION
1	OE	3 State output Enable Input (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	$\overline{Q0}$ to $\overline{Q7}$	3 State Latch Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

PIN DESCRIPTION (HC573)

PIN No	SYMBOL	NAME AND FUNCTION
1	OE	3 State output Enable Input (Active LOW)
2, 3, 4, 5, 6, 7, 8, 9	D0 to D7	Data Inputs
12, 13, 14, 15, 16, 17, 18, 19	Q0 to Q7	3 State Latch Outputs
11	LE	Latch Enable Input
10	GND	Ground (0V)
20	V _{CC}	Positive Supply Voltage

IEC LOGIC SYMBOLS



TRUTH TABLE

	INPUTS		OUTPUTS			
OE	LE	D	Q (HC573)	Q (HC563)		
Н	Х	Х	Z	Z		
L	L	Х	NO CHANGE *	NO CHANGE *		
L	Н	L	L	н		
L	Н	Н	Н	L		

X: DON'T CARE Z: HIGH IMPEDANCE *: Q/Q OUTPUTS ARE LATCHED AT THE TIME WHEN THE LE INPUT IS TAKEN LOW LOGIC LEVEL.

LOGIC DIAGRAMS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
l _{IK}	DC Input Diode Current	± 20	mA
I _{ОК}	DC Output Diode Current	± 20	mA
lo	DC Output Source Sink Current Per Output Pin	± 35	mA
Icc or I _{GND}	DC V _{CC} or Ground Current	± 70	mA
PD	Power Dissipation	500 (*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. (*) 500 mW: \cong 65 °C derate to 300 mW by 10mW/°C: 65 °C to 85 °C

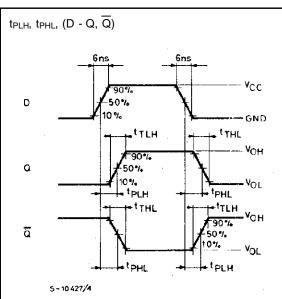
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Value	Unit
V _{CC}	Supply Voltage		2 to 6	V
VI	Input Voltage		0 to V _{CC}	V
Vo	Output Voltage		0 to V _{CC}	V
T _{op}	Operating Temperature: M54HC Series M74HC Series		-55 to +125 -40 to +85	°C ℃
t _r , t _f	Input Rise and Fall Time	$V_{CC} = 2 V$	0 to 1000	ns
		V _{CC} = 4.5 V	0 to 500	
		$V_{CC} = 6 V$	0 to 400	

DC SPECIFICATIONS

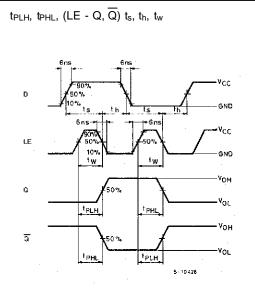
		Т	est Co	nditions				Value					
Symbol	Parameter	Vcc (V)				_A = 25 ^C C and 7			85 °C HC	1	125 °C HC	Unit	
		(v)			Min.	Тур.	Max.	Min.	Max.	Min.	Max.		
VIH	High Level Input	2.0			1.5			1.5		1.5			
	Voltage	4.5			3.15			3.15		3.15		V	
		6.0			4.2			4.2		4.2			
	Low Level Input	2.0					0.5		0.5		0.5		
	Voltage	4.5					1.35		1.35		1.35	V	
		6.0					1.8		1.8		1.8		
V _{OH} High Level Output Volta	High Level	2.0	VI =		1.9	2.0		1.9		1.9			
	Output Voltage	4.5	VI – VIH	I _O =-20 μΑ	4.4	4.5		4.4		4.4		V	
		6.0	or		5.9	6.0		5.9		5.9		V	
		4.5	VIL	I ₀ =-6.0 mA	4.18	4.31		4.13		4.10			
		6.0		I ₀ =-7.8 mA	5.68	5.8		5.63		5.60			
V _{OL}	Low Level Output	2.0	V1 =			0.0	0.1		0.1		0.1		
	Voltage	4.5	VI – VIH	I _O = 20 μΑ		0.0	0.1		0.1		0.1		
		6.0	or			0.0	0.1		0.1		0.1	V	
		4.5	Vı∟	l _O = 6.0 mA		0.17	0.26		0.33		0.40		
		6.0		l ₀ = 7.8 mA		0.18	0.26		0.33		0.40		
lı	Input Leakage Current	6.0	Vi = '	Vcc or GND			±0.1		±1		±1	μA	
I _{OZ}	3 State Output Off State Current	6.0	· ·	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = V_{CC} \text{ or } GND$			±0.5		±5.0		±10	μA	
I _{CC}	Quiescent Supply Current	6.0	V _I = '	V _{CC} or GND			4		40		80	μA	

	Parameter	Test Conditions		Value								
Symbol		V _{CC} C _L (V) (pF)			$T_A = 25 \ ^{\circ}C$ 54HC and 74HC		-40 to 85 °C 74HC		-55 to 125 °C 54HC		Unit	
		(v)	(PF)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{TLH} Output Transitio	Output Transition	2.0				25	60		75		90	
	Time	4.5	50			7	12		15		18	ns
		6.0				6	10		13		15	
t _{PLH}	Propagation Delay Time	2.0				50	115		145		175	
t PHL		4.5	50			15	23		29		35	ns
	(LE - Q, Q)	6.0				13	20		25		30	
		2.0				60	155		195		235	
		4.5	150			20	31		39		47	ns
		6.0				17	26		33		40	
t _{PLH}	Propagation	2.0				42	110		140		165	
t PHL	Delay T <u>im</u> e	4.5	4.5 50			14	22		28		33	ns
	(D - Q, Q)	6.0				12	19		24		28	
		2.0				57	150		190		225	
		4.5	4.5 150			19	30		38		45	ns
		6.0				16	26		32		38	
t _{PZL} t _{PZH}	3 State Output Enable Time	2.0	50	R _L = 1 KΩ		55	140		175		210	ns
		4.5				17	28		35		42	
		6.0				14	24		30		36	
		2.0				66	180		225		270	
		4.5	150 F	$R_L = 1 K\Omega$		22	36		45		54	ns
		6.0				19	31		38		46	
t _{PLZ}	3 State Output Disable Time	2.0				40	125		155		190	
t _{PHZ}		4.5	50	$R_L = 1 K\Omega$		17	25		31		38	ns
		6.0				15	21		26		32	
t _{W(L)}	Minimum Pulse	2.0				40	75		95		110	
tw(H)	Width	4.5	50			8	15		19		22	ns
		6.0				7	13		16		19	
ts	Minimum Set-up	2.0				16	50		65		75	
	Time	4.5	50			5	10		13		15	ns
		6.0				3	9		11		13	
t _h	Minimum Hold	2.0					5		5		5	
	Time	4.5	50				5		5		5	ns
		6.0					5		5		5	
CIN	Input Capacitance					5	10		10		10	pF
C _{OUT}	Output Capacitance					10						pF
C _{PD} (*)	Power Dissipation Capacitance			r HC563 r HC573		49 51						pF


AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

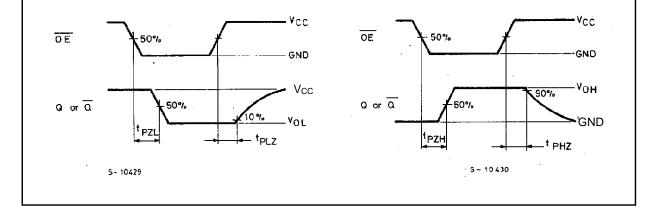
(*) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operting current can be obtained by the following equation. $l_{CC}(opr) = C_{PD} \bullet V_{CC} \bullet f_{|N|} + l_{CC}/8$ (per Gate) The CPD when n pcs of FLIP-FLOP operate, can be gained by following equations:

for HC563 CPD (TOTAL) = 33 + 16 x n [pF]; for HC573 CPD (TOTAL) = 33 + 18 x n [pF]

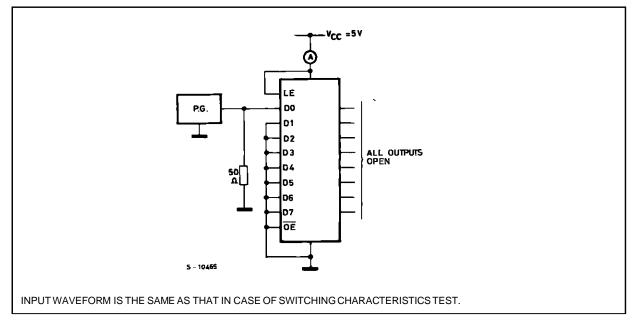


SWITCHING CHARACTERISTICS TEST WAVEFORM

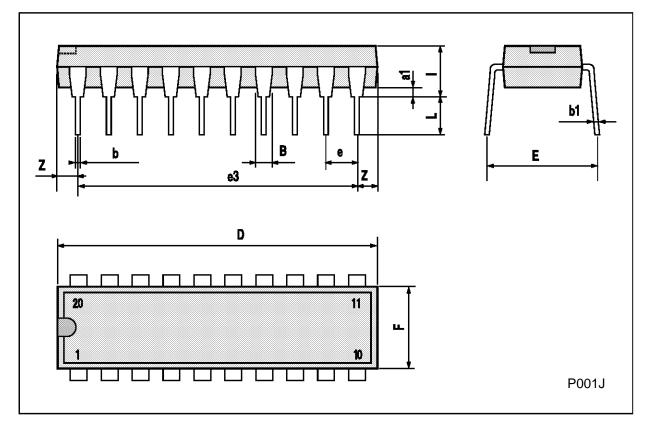
t_{PLZ}, t_{PZL}


The 1K Ω load resistors should be connected between outputs and V_{CC} line and the 50pF load capacitors should be connected between outputsand GND line. All inputs except \overline{OE} input should be connected to V_{CC} line or GND line such that outputs will be in low logic level while \overline{OE} input is held low.

The 1K Ω load resistors and the 50pF load capacitors should be connected between each output and GND line.

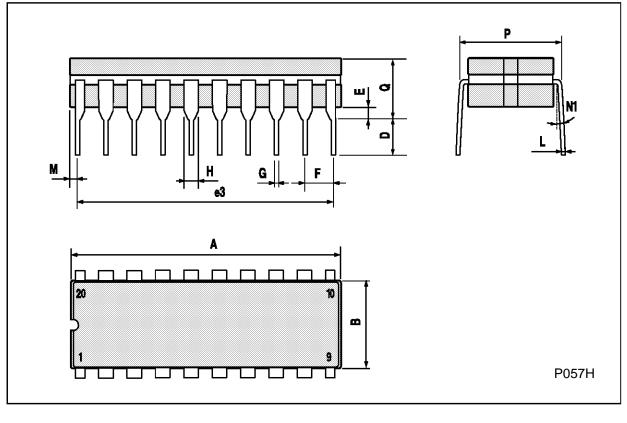

All inputs except \overline{OE} input should be connected to V_{CC} or GND line such that output will be in high logic level while \overline{OE} input is held low.

M54/M74HC563/573


TEST CIRCUIT Icc (Opr.)

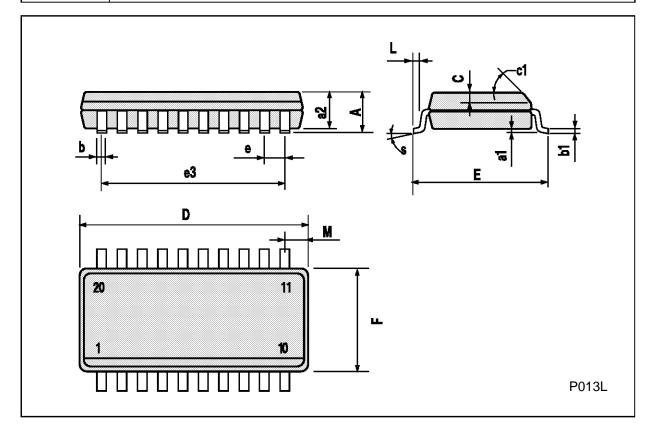
DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.254			0.010			
В	1.39		1.65	0.055		0.065	
b		0.45			0.018		
b1		0.25			0.010		
D			25.4			1.000	
E		8.5			0.335		
е		2.54			0.100		
e3		22.86			0.900		
F			7.1			0.280	
I			3.93			0.155	
L		3.3			0.130		
Z			1.34			0.053	

Plastic DIP20 (0.25) MECHANICAL DATA

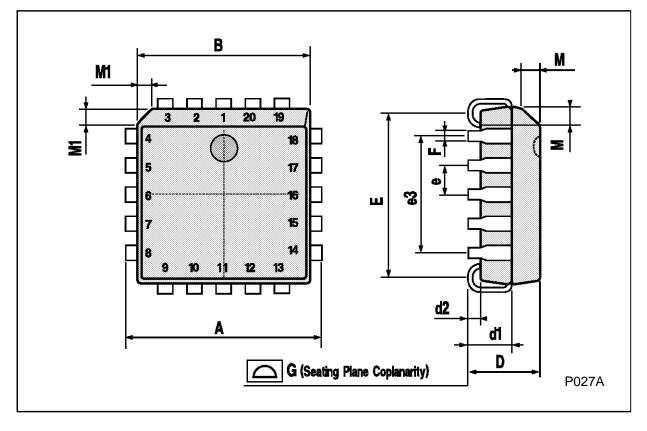


M54/M74HC563/573

Ceramic DIP20 MECHANICAL DATA


DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
A			25			0.984	
В			7.8			0.307	
D		3.3			0.130		
E	0.5		1.78	0.020		0.070	
e3		22.86			0.900		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Ι	1.27		1.52	0.050		0.060	
L	0.22		0.31	0.009		0.012	
М	0.51		1.27	0.020		0.050	
N1	4° (min.), 15° (max.)						
Р	7.9		8.13	0.311		0.320	
Q			5.71			0.225	

DIM.		mm		inch				
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.10		0.20	0.004		0.007		
a2			2.45			0.096		
b	0.35		0.49	0.013		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.50			0.020			
c1	45° (typ.)							
D	12.60		13.00	0.496		0.512		
E	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		11.43			0.450			
F	7.40		7.60	0.291		0.299		
L	0.50		1.27	0.19		0.050		
М			0.75			0.029		
S	8° (max.)							


SO20 MECHANICAL DATA

M54/M74HC563/573

PLCC20 MECHANICAL DATA

DIM.		mm		inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	9.78		10.03	0.385		0.395	
В	8.89		9.04	0.350		0.356	
D	4.2		4.57	0.165		0.180	
d1		2.54			0.100		
d2		0.56			0.022		
E	7.37		8.38	0.290		0.330	
е		1.27			0.050		
e3		5.08			0.200		
F		0.38			0.015		
G			0.101			0.004	
М		1.27			0.050		
M1		1.14			0.045		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

