
Immersive Surface Interrogation

Manfred E. Brill, Robert J. Moorhead, Yanlin Guan
Engineering Research Center
Mississippi State University
Mississippi State, MS 39762

{brill, rjm, guanyl}@erc.msstate.edu

ABSTRACT
The geometrical quality of curves and surfaces is of cen-
tral importance in the design and manufacturing process in
many industries. There are well-established analysis tech-
niques using curves on surface like reflection lines, highlight
lines and isophotes. Such interrogation methods are state-
of-the-art on desktop CAD systems. We describe the in-
tegration of these methods in a spatially-immersive virtual
environment.

The computation and description of these interrogation lines
is unified by using a contouring algorithm, either in param-
eter space for a NURBS geometry or in 3D space for polyg-
onal nets. We introduce interrogation bands for light cylin-
ders with a given radius instead of mathematically defined
light lines. The interrogation bands can be rendered as ge-
ometry or by texture mapping techniques. With textures
interactive visualization, even of view-dependent reflection
bands, is possible. We describe an interactive system in-
tegrating these techniques in a spatially-immersive virtual
environment.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three–Dimensional Graphics
and Realism – color, shading, and texture; I.3.7 [Computer
Graphics]: Three–Dimensional Graphics and Realism –
Virtual Reality; I.3.8 [Computer Graphics]: Applications

Keywords
Surface interrogation, free–form surfaces, virtual reality, tex-
ture mapping

1. INTRODUCTION
One of the major tasks in the process of styling, especially in
the automotive industry is the design of “visually pleasing”
curves and surfaces, in a functional or aesthetic way. For
example, the roof of a car should be a convex surface, with-
out bumps or wiggles. These kind of features correspond

to intrinsic geometric properties like continuity, curvature,
or torsion. Using conventional rendering algorithms, these
surface characteristics often are not visible, because of the
smoothing in the interpolative shading algorithms.

In the automotive industry reflections are generated by flu-
orescent lightbulbs in long lines along a ceiling. The geome-
try and the aesthetic value of these reflections is used for the
quality assesment of the car body. With modern graphics
hardware and algorithms these reflections can be simulated
on a computer. These surface interrogation algorithms [14]
are used to visualize surface properties like convexity, geo-
metric continuity, curvature analysis, and for the assesment
of the aesthetic quality of a surface.

In a taxonomy of the interrogation methods, there are three
different categories:

• visualizing scalar values describing quality measures
using color maps or textures. The best example of
these methods is a color map visualizing the gaussian
or mean curvature on a given surface [10, 25]. In Fig-
ure 1 the mean curvature of a blending surface with
tangent continuity is visualized by a scalar color map;

Figure 1: A color map visualizing mean curvature

• describing curvature properties of the surface by com-
puting secondary geometry, like generalized focal sur-
faces [13]. In Figure 2 the discontinuity of the gener-



alized focal surface using the mean curvature as the
offset function can be easily observed, indicating cur-
vature discontinuity of the interrogated car body sur-
face [12];

Figure 2: Continuity test using focal surfaces in a
CAVE-like environment

• computing curves on surface, like the reflections gen-
erated by long parallel light lines on a real object. In
Figure 3 the reflection lines generated by 50 parallel
light lines on the body surface of a car model are vi-
sualized.

Figure 3: Reflection lines for 50 parallel light lines

1.1 Surface Interrogation using Curves on Sur-
face

In [17, 18] reflection lines were first introduced as the pro-
jection of a light line on the surface, which can be seen from

the current eye point, if the light line is reflected on the
surface, like in Figure 4.

Figure 4: Reflection lines as reflections of parallel
light lines observed from the current eye point

Isophotes [1, 23], the isolines of brightness on the surface are
another surface interrogation method that computes curves
on a surface. Like the reflection lines they are very sensi-
tive to small shape deviations of the surface. In this way
isophotes provide a fast and view-independent interrogation
method.

The concept of highlight lines was introduced by [2, 3] as a
view-independent variant of the reflection lines. Highlight
lines can be described as reflection lines with the eye point
at infinity. In Figure 5, 50 parallel light lines were used to
compute highlight lines on the body of a car.

Figure 5: Highlight lines for 50 parallel light lines

All these lines are first-order methods. If the interrogated
surface is Ck , the interrogation lines will be Ck−1. It is
hard to visualize and detect the difference between C2 and
C1 on a shaded surface. However, C0 continuity for the



interrogation lines means we are looking for corners in the
computed lines; something we can clearly observe. In Fig-
ure 6, 10 parallel light lines and the corresponding highlight
lines are rendered on the same computed blending surface
shown in Figure 1. The surface is tangent continous. As
expected we easily see corners in the highlight lines in the
center of Figure 6, where we expected C1 behaviour of the
interrogated surface.

Figure 6: Highlight lines indicating a C1 blend

1.2 Overview
In this paper we present a unified approach for the compu-
tation of the interrogation lines, using contouring. Our con-
touring approach is independent of the mathematical repre-
sentation of the interrogated geometry. Light bulbs in reality
are not mathematical defined lines but have a certain width.
So all interrogation methods are described as interrogation
bands, modeling light cylinders [3].

All interrogation lines were introduced for NURB surfaces.
We simulate lighting properties of the interrogated geome-
try, so all we need are normal vectors. Thus we are able to
implement a system which is independent of the mathemat-
ical representation of the interrogated surface. In styling,
the interrogated objects are often represented by a set of
trimmed free–form surfaces. These trimmed surfaces can be
approximated by triangular meshes; see [19] for algorithms.
If normals for the mesh vertices are given, all interrogation
lines can be computed for these triangular meshes or polyg-
onal nets.

Interrogation methods like the reflection lines and isophotes
on a real car and with real lights are very popular, especially
in the aesthetic assesment of car body surfaces. Although
the methods are state–of–the–art in desktop CAD systems,
the car stylists do not rely on simulated interrogation lines.
Since they want to interact with the car model and the light,
walking around the car and observing changes in the inter-
rogation lines, we implemented an immersive visualization
system using a CAVE–like environment. Such an environ-
ment improves the interpretability of the surface quality.
The user is able to work like he is used to with the real
object. The immersion and interaction with the light geom-
etry and the interrogation lines on the surface increase the
capability of decision making in design and manufacturing.

2. INTERROGATION BANDS
All interrogation lines use a light line L. We represent a line
by a light point L0 ∈ R3 and a light direction s ∈ R3.

We always describe reflection properties of this line or an
array of several lines, computing geometry on the surface
S. Using the light line, the algorithms rely on intersec-
tions of lines in space. A fast criterion to decide if two lines
G1(P1,d1), G2(P2,d2) in R3 intersect is the perpendicular
distance of two lines. If the two lines are defined by the
points P1, P2 and the directions d1,d2 ∈ R3, they intersect
if and only if their perpendicular distance is zero:

< P1P2,d1 × d2 >

||d1 × d2|| = 0. (1)

[3] were the first to compute highlight lines by solving a con-
touring problem, using the perpendicular distance. They
compute scalar values for all vertices of a tesselation of the
interrogated NURB surface. The perpendicular distance is
computed as a function of the parameter values. The two
lines plugged in the perpendicular distance are the light line
L and the line given by the current vertex and the current
lookup vector. Thus a contouring algorithm in the parame-
ter space of the surface can be used to compute the isoline
of zero distance.

This approach can be used to unify the computation of all
interrogation lines. The difference is the direction of the
line we plug in equation (1). For all vertices P on S with
unit normal vector n, we describe the interrogation lines
as isolines of scalar functions defined by the perpendicular
distance.

If E is the current eye-point, we can use the reflected vector

r = 2 〈n, PE〉n − PE

as the lookup-vector. With

fR(P, r) =
〈r× s,PL0〉

‖r × s‖ (2)

the reflection lines are isolines with fR = 0. Highlight lines
are isolines fH = 0 with

fH(P, n) =
〈s × n,PL0〉

‖s × n‖ . (3)

Isophotes are the isolines fI = 0 using

fI(P,n) = 〈n, s〉 . (4)

If the surface S is given as a free–form surface, the vertices
P are functions of the surface parameters. So contouring
defines a polyline in the 2D parameter space and a curve on
the surface. If we are only provided with a polygonal net
with normals, contouring defines a polyline in 3D space.

Real lights on a ceiling are not mathematical lines but have
a certain width. Using a value R > 0 for the radius of a light
cylinder we introduce reflection and isophote bands like the
highlight bands of Beier and Chen. A vertex P on the sur-
face S with the lookup–vector luv is an interrogation point
on an interrogation band with respect to the light cylinder
given by the point L0, the light direction s, and light radius



R if and only if

f(P, luv) = | 〈luv × s,PL0〉
‖luv × s‖ | ≤ R. (5)

For the visualization of the interrogation bands we compute
the isolines representing the center of the interrogation band
for C = 0 and the boundary with C = R. Any contouring
algorithm [21] can be used to compute these isolines in pa-
rameter or 3D space.

For planar and parallel light bands a fast contouring algo-
rithm can be developed. For simplicity of notation we as-
sume that the bounding box of the interrogated object and
all lookup vectors are normalized to [0, 1]3. If the light bands
are parallel to the x– or y–axis in a light plane parallel to
z = 1, we have to compute the intersection point (x′, y′) of
the lines given by the current vertex P and the direction
luv with the light plane z = zlight:

x′ = Px +
zlight − Pz

luvz
luvx, (6)

y′ = Py +
zlight − Pz

luvz
luvy . (7)

For a light cylinder x = λ, a point P is an interrogation
point, if

|x′ − λ| ≤ R;

for a light cylinder y = µ parallel to x, we get

|y′ − µ| ≤ R.

Note that for reflection lines, the lookup–vector luv = r
has to be recomputed if the eye–point changes. If the light
cylinders change their radius R or their position, the scalar
values and the isolines have to be recomputed.

For the view–independent highlight lines, the scaled and
projected vertex coordinates (x′, y′) can be processed in ad-
vance. The user can interrogate the surface in an interactive
way by transforming the light cylinders, by translating or
rotating them in the light plane. For the transformed light
bands only the λ or µ values change.

3. TEXTURE MAPPING TECHNIQUES
With modern computer graphics hardware and texture map-
ping we can visualize intrinsic geometric and optical prop-
erties of an object [11]. Modern graphics APIs based on
OpenGL provide built-in support for texture mapping. In
general, texture mapping means projecting a 2D bitmap
onto a 3D object. So, texture coordinates have to be as-
signed to the vertices of the textured object. An intermedi-
ate object [5] like a plane, a cylinder or a sphere is used to
compute the texture coordinates. The bitmap is mapped on
that intermediate object; then in a second step the texture
coordinates for the rendered object are computed using a
lookup vector and the intermediate object.

For planar light bands, a plane as the intermediate object
is straightforward. We need a 2D bitmap representing the
current light cylinders in the light plane. Figure 7 shows
such a bitmap for a rake of 10 light cylinders, parallel to
the x−coordinate axis. We model light attenuation in the
cylinder. The light can be described as constant over the
cylinder, or to drop from 1 in the center to 0 at the cylinder

boundary in a linear or non–linear way. For Figure 7 a cubic
attenuation was used. Light attenuation and prefiltering the
bitmap prevents sampling artifacts in the rendered images.

Figure 7: A bitmap representing 10 parallel light
bands

Bier and Sloan [5] introduced several lookup–vectors for the
computation of texture coordinates. These lookup–vectors
correspond to the vectors we used to define the interrogation
bands.

The “object normal” method for the texture coordinates
uses the vertex normal as the lookup–vector and the light
plane as the intermediate object. Obviously that results in
the highlight bands, just as we described them. For parallel
bands we generate a 1D gray–scale texture of parallel, pla-
nar light bands and compute the texture coordinates, like
in Figure 7 where we rendered a 2D bitmap for illustration
purposes. Equations (6) and (7) can be used like in the con-
touring algorithm. The luminance value lum for the current
vertex is determined by the texture coordinates and is used
as a blending factor. The fragment color Cf is determined
by blending the object color Co and the light color Cl:

Cf = lum · Co + (1 − lum) · Cl.

Figure 8: Texture mapped highlight bands

In Figure 8 the computed blending surface is rendered us-
ing the “object normal” and the 1D bitmap representing
10 parallel and planar light cylinders. Again the corners in
the highlight bands, indicating the tangent continuity can
be clearly observed. In Figure 9 highlight bands are ren-



dered on the body surface of a car. One centered planar
light cylinder was used.

Figure 9: Texture mapped highlight bands on a car

For irregular distributions of the light bands a 2D bitmap
has to be stored, and the perpendicular distance fH can be
used to compute the texture coordinates. The luminance
value for the current vertex corresponding to the texture
coordinates is again used as a blending factor.

Figure 10: Texture mapped isophote bands

The isophote bands do not correspond to a special lookup-
vector in two–pass texture mapping, but we can render iso-
phote bands using texture mapping. First, we build a 1D
texture map representing a ramp of luminance values in-
creasing from 0 to 1. Then |fI | is used to compute the
texture coordinates, and the fragment color is computed

by a blend between object and light color. The texture is
clamped, so values of |fI | outside the range [0, 1] use a border
luminance, which is defined as 0. Like the light band atten-
uation, the luminance ramp for the isophote band can be
modeled in a linear or non–linear way. In Figure 10 we used
a rake of parallel light cylinders to render isophote bands
on the blending surface. In Figure 11 isophote bands are
rendered on the car body. The planar regions of the body
surface can be clearly observed.

Figure 11: Texture mapped isophote bands on a car

The “reflected ray” lookup–vector for two-pass texture map-
ping uses the reflection vector r to determine the texture co-
ordinates. This corresponds to the scalar function fR, so we
finally get reflection bands. The reflected vector r is view–
dependent, so everytime the eye–point changes, the texture
coordinates have to be recomputed. For every change of
view we have to recompute the texture coordinates.

Blinn and Newell [6] simulate reflection properties of an ob-
ject using environment mapping – the so-called sphere map-
ping. An irradiance image equivalent to that which would
be seen in a perfectly reflective hemisphere when viewed us-
ing an orthographic projection is used as a bitmap. Then,
a sphere is used as the intermediate object to determine the
texture coordinates. Modern 3D APIs, especially OpenGL,
provide a texture coordinate generation mode to generate
the texture coordinates of the rendered vertices of an object
for such a sphere map.

The sphere map is computed in the viewing plane. Rays
fired using the orthographic projection reflect in the center
of the sphere, back to the viewer. There are several ways
to generate a specular sphere map. Physical approaches, for
example taking a photograph of a reflective sphere, can be
employed. Six images of the environment, computed images
or pictures taken in a real world scene, could be used. That
cube is warped onto a unit circle within the square texture;
see [7] for more details.

For given light cylinders in a plane the luminance values
can be computed using the scalar function fR. Then we
warp the bitmap on a sphere. To avoid sampling artifacts
a volume can be intersected with the light bands, prefilter-



ing the sphere map. If we assume a cone for that volume,
the intersection with a light plane is defining a conic sec-
tion. Figure 12 shows the luminance values on the sphere
contained in the texture space [0, 1] × [0, 1], representing 10
parallel and planar light cylinders in the light plane z = 1.
We used 128 × 128 pixels with a sampling rate of 16 bit for
that image.

Figure 12: A sphere map for 10 parallel light cylin-
ders

Using the texture mapping API of OpenGL we store the
sphere map representing the light cylinders. The texture co-
ordinates for the current eye point are computed by OpenGL.
In this way we are able to achieve high frame–rates even for
the view–dependent reflection bands. In Figure 13 we see
reflection bands, rendered in OpenGL using the sphere map
shown in Figure 12.

Figure 13: Sphere–mapped reflection bands

Figure 14 uses the same light cylinders that were used in
Figure 9 and a OpenGL sphere map to render reflection
bands on a car.

4. IMMERSIVE INTERROGATION
Interrogation methods are well-known to users of CAD–
systems, but running the interrogation methods on a desk-
top system is like looking through a window into the real
world. The stylists and designers in the automotive indus-
try are used to walking around the interrogated object freely.
They interact with the light and the real object, being able
to look closely at details, moving quickly to another part of
the object, or stepping back to gain an overall impression.
There is no need to position an object on a 2D display with
a pointing device. Thus there is a big difference between
the simulation running on a desktop and the real process.
For that reason, many users of interrogation methods in the
automotive industry do not accept desktop driven interro-
gation software.

Figure 14: Sphere–mapped reflection bands on a car

Therefore we decided to build a immersive visualization en-
vironment for interactive surface interrogation. With pre-
cise tracking of the movement of the eyes and body, the
observers can have better insight into the characteristics of
the interrogated geometry than by running a program on
a desktop system. An immersive visualization environment
[8, 9, 26] gives the observers much more flexibility in inter-
acting with the lights and the interrogated object, like they
are used to in the real process. This technology gives the
user the psychological experience of being surrounded by a
virtual environment, which is very close to the environment
they are used to in the real world.

In our CAVE–like virtual environment, the user assessing
the quality of a geometry can walk around freely, analyzing
the geometry from all viewpoints. In particular, the re-
flection bands visualized using hardware accelerated sphere
mapping provide a high degree of immersion for a tracked
user. Walking around the interrogated object the reflection
bands on the surface change in realtime.

Using a wand, the users can change the lighting situation
by transforming the parallel light cylinders. With the tex-
ture mapping techniques we implemented, high frame-rates
can be achieved. The interrogation bands change interac-



tively, while the user is transforming the light. This gives
the users a feeling of “being there.” Whereas it takes on
the order of 20 seconds to rotate an object on the desk-
top, in an immersive virtual environment, it takes around 2
seconds [27]. The user’s hand and the light bands are collo-
cated in a virtual space, so it is very intuitive to move the
lights around. The user can change the radius and attenua-
tion of the light definition. It is possible to switch between
different styles of interrogation bands and rendering modes
interactively. These features enhance the possibilities be-
yond reality, wherein the lights are fixed and changes in the
setup are time consuming.

In the immersive interrogation environment the users can
combine all the different categories of interrogation meth-
ods, like scalar maps visualizing the curvature, generalized
focal surfaces [12], or the interrogation bands introduced
in this paper. All these features together with the situa-
tional awareness of “being there” results in a new level in
computer–based surface interrogation.

Figure 15: Step 1: Parallel light lines, an object and
interrogation lines indicating the need for fairing

One major application of computer-simulated interrogation
lines is the inverse modeling of geometry, based on pre-
scribed reflection lines, highlight lines, or isophotes. [17]
uses a partial differential equation to fit a free–form surface
to a set of given reflection lines. [1] also proposes a PDE to
fit a family of isophotes. [4, 28] propose a similar approach
for the highlight lines. [20] presents an unified approach for
the inverse modeling based on interrogation lines using a
variational algorithm.

All these algorithms can be integrated in an immersive envi-
ronment. There, an intuitive and haptic interface is possible.
We start with a given object and a given set of light cylin-
ders or light lines, like is illustrated in Figure 15. There one
of the interrogation lines identifies a region on the surface
which needs fairing.

The users in our immersive interrogation environment mod-

Figure 16: Step 2: Deformed light lines, the original
object and fair interrogation lines

ify the light definition by transforming or bending the light
lines. On the surface, the texture or isolines corresponding
to the original surface and the changed lights are rendered.
Figure 16 illustrates this step.

Figure 17: Step 3: The original light lines, the re-
modeled object and fair interrogation lines

If the interrogation lines are faired, the object is remodeled
to fit the displayed interrogation lines in conjunction with
the original light definition. We end up in a situation like
Figure 17. This kind of interactive “modeling with light” is
almost impossible to build for a desktop system, lacking the
situational awareness and the haptic interfaces in a CAVE-
like environment.



We use the CAVElibs [22] as the API for our CAVE-like en-
vironment. The rendering is implemented in SGI OpenGL
Performer. Performer provides an object-oriented real-time
API for scene graphs and supports the import of a wide
range of 3D objects. In this way CAD models can easily
be imported into the immersive system. NURB surfaces or
tesselated polygonal nets with vertex normals can be used
for the interrogation. We use the data structures and filters
in VTK [24] to implement the contouring approach. On top
of VTK we designed and implemented an object-oriented
toolkit in C++ for the light cylinders and the different in-
terrogation bands. This toolkit is designed independently of
a rendering API, so an integration in a desktop system or
in alternative software for immersive visualization systems
like VRJuggler is easy.

5. CONCLUSION
Using a virtual visualization environment we are able to pro-
vide an immersive surface interrogation system. We believe
that the immersion leads to improved interpretation of sur-
face quality, increasing the capability in decision making in
the design and manufacturing process. All categories of sur-
face interrogation methods, scalar maps, secondary geom-
etry, and interrogation bands are integrated in one object-
oriented software toolkit.

The computation and rendering of interrogation bands is
unified using a contouring approach. Texture mapping can
be used to achieve high frame-rates for the user interface.
The interrogation results can be visualized and the users
can interact with the object and light like working with a
real object and real lights. This improves the acceptance of
computer-simulated surface interrogation. In an immersive
environment we implement a very intuitive user interface for
inverse modeling, fitting a surface to prescribed interroga-
tion lines.

6. FUTURE WORK
We intend to extend the existing immersive environment to
be a very intuitive modeling environment with haptic feed-
back and a user interface based on cognitive task analysis.

We will implement the view-independent environment map-
ping method proposed by [15, 16], using a paraboloid instead
of a sphere as the intermediate object. This will result in
even higher frame rates for the visualization of reflection
bands. Also, we will implement different intermediate ob-
jects like a cylinder or a sphere, distributing the light cylin-
ders on that geometry.

We also plan to link our immersive interrogation system with
CAD systems, so the users can exchange their data between
our system and their CAD system in a very convenient way.
The users will be able to see their original CAD data. and
the original modeling capabilities of their CAD system can
be used for the tesselation and inverse modeling.

7. REFERENCES
[1] R. Andersson. Surface design based on brightness

intensity or isophotes – theory and practice. In
J. Hoschek and P. Kaklis, editors, Advanced Course on
FAIRSHAPE, pages 131–143, 1996.

[2] K.-P. Beier and Y. Chen. The highlight–line:
algorithms for real-time surface–quality assesment.
CAD, 26:268–278, 1994.

[3] K.-P. Beier and Y. Chen. The highlight band, a
simplified reflection model for iterative smoothness
evaulation. In N. Spapidis, editor, Designing Fair
Curves and Surfaces, 1994.

[4] K.-P. Beier, Y. Chen, and D. Papageorgiou. Direct
highlight line modification on nurb surfaces. CAD,
14:583–601, 1998.

[5] E. A. Bier and K. R. Sloan. Tow–part texture
mapping. IEEE Computer Graphics and Applications,
6(9):40–53, 1986.

[6] J. Blinn and M. E. Newell. Texture and reflection in
computer generated images. Communication of the
ACM, 19:362–327, 1976.

[7] D. Blythe. Advanced graphics programming
techniques using OpenGL. In SIGGRAPH Course
Notes. ACM SIGGRAPH, 1999.

[8] C. Cruz-Neira, D. Sandin, and T. DeFanti. Virtual
reality: The design and implementation of the CAVE.
In SIGGRAPH Conference Proceedings, pages
135–142, 1993.

[9] C. Cruz-Neira, D. Sandin, T. DeFanti, R. Kenyon, and
J. Hart. The CAVE: Audio visual experience
automatic virtual environment. Communications of
the ACM, 35(6):65–72, 1992.

[10] J. C. Dill. An application of color graphics to the
display of surface curvature. In SIGGRAPH
Conference Proceedings, pages 153–161, 1981.

[11] P. Haeberli and M. Segal. Texture mapping as a
fundamental drawing primitive. In Eurographics
Workshop on Rendering, pages 259–266, 1993.

[12] H. Hagen, Y. Guan, and R. J. Moorhead. Interactive
surface interrogation using IPT technology. In Virtual
Reality 2002 – Immersive Projection Technology
Symposium, 2002.

[13] H. Hagen and S. Hahmann. Generalized focal surfaces:
a new method for surface interrogation. In IEEE
Visualization 92 Proceedings, pages 70–76, 1992.

[14] H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima,
B. Woerdenweber, and P. Hillemann-Grundstedt.
Surface interrogation algorithms. IEEE Computer
Graphics and Applications, 12(5):53–60, 1992.

[15] W. Heidrich and H.-P. Seidel. View-independent
environment maps. In Eurographics/SIGGRAPH
Workshop on Graphics Hardware, pages 39–45, 1998.

[16] W. Heidrich and H.-P. Seidel. Realistic,
hardware–accelerated shading and lighting. In
SIGGRAPH Conference Proceedings, pages 171–178,
1999.

[17] E. Kaufmann and R. Klass. Smoothing surfaces using
reflection lines for families of splines. CAD,
20:312–316, 1988.



[18] R. Klass. Correction of local surface irregularities
using reflection lines. CAD, 12:73–76, 1980.

[19] K. Lee and I. Choi. Evaluation of surfaces for
automobile body styling. In Computer Graphics
International 96, pages 202–211, 1996.

[20] J. Loos, G. Greiner, and H.-P. Seidel. Modeling of
surfaces with fair reflection line pattern. In Shape
Modeling and Applications 99, pages 256–263, 1999.

[21] W. E. Lorensen and H. E. Cline. Marching cubes: a
high resolution 3D surface construction algorithm.
Computer Graphics, 21(4):163–169, 1987.

[22] D. Pape. A hardware–independent virtual reality
development system. IEEE Computer Graphics and
Applications, 16(4):4–47, 1996.

[23] T. Poeschl. Detecting surface irregularities using
isophotes. CAGD, 1:163–168, 1984.

[24] W. Schroeder, K. Martin, and W. E. Lorensen. The
Visualization Toolkit: An Object–Oriented Approach
to 3–D Graphics. Prentice Hall, 1997.

[25] L. R. Seidenberg, R. B. Jerad, and J. Magewick.
Surface curvature analysis using color. In IEEE
Visualization 92 Proceedings, pages 260–267, 1992.

[26] A. van Dam, A. Forsberg, D. Laidlaw, J. LaViola, and
R. Simpson. Immersive VR for scientific visualization:
A progress report. IEEE Computer Graphics and
Applications, 20(6):26–52, 2000.

[27] C. Ware and J. Rose. Rotating virtual objects with
real handles. ACM Transactions CHI, 6(2):162–180,
1999.

[28] C. Zhang and F. Cheng. Removing local irregularities
of nurb surfaces by modifying highlight lines. CAD,
30:923–930, 1998.

Note to reviewers: The images herein have been reduced in
resolution for the sake of file size for the review process;
the images for the final version will be much higher resolu-
tion; for example, Figure 1 is only 220x152 now, but will be
800x600 for final version.


