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Abstract—Many evidence-based trust models require the ad-
justment of parameters such as aging- or exploration-factors.
What the literature often does not address is the systematic choice
of these parameters. In our work, we propose a generic procedure
for finding trust model parameters that maximize the expected
utility to the trust model user. The procedure is based on game-
theoretic considerations and uses a genetic algorithm to cope with
the vast number of possible attack strategies. To demonstrate the
feasibility of the approach, we apply our procedure to a concrete
trust model and optimize the parameters of this model.

I. INTRODUCTION

Evidence-based trust models use past experience to decide
about the trustworthiness of potential interaction partners.
Positive experiences generally increase the estimate of the
trustworthiness, and negative experiences reduce it. How this
is done in detail is specified by the numerous trust models that
have been proposed in the literature (e.g. see [1]–[3]). Many
of these trust models can be configured using one or more
parameters. For instance, some models use an aging factor
that determines the weight given to older experiences. Other
models use a specific threshold to decide when an opponent
is thought to be trustworthy enough to be relied upon.

Most often, the effectiveness of the proposed trust models
is evaluated for specific parameter settings (configurations) of
the models. While such an evaluation can show how well the
model works for these specific configurations, the evaluations
do not tell us whether the model could perform even better if
the configuration were improved. Unfortunately, it is often left
open how systematically to find suitable configurations for the
proposed trust models. Therefore, methods for optimizing the
parameters of a trust model are required.

In this work, we propose a generic method for finding
optimal configurations for evidence-based trust models. The
idea is to consider the deployment of a trust model as a game
against a malicious opponent – the attacker. By applying a
game-theoretic solution concept, we can assess which config-
uration of the trust model would yield the highest utility. Our
solution concept can deal with a payoff matrix that is only
partially known. However, this approach requires knowledge
of the strategy an attacker is most likely to choose for a given
trust model configuration. We show how such strategies can
be determined by searching in the space of possible attack
strategies. Since the number of attack strategies is infinite,
we propose a genetic algorithm that can cope with this huge
search space.

In the second part of the paper we apply our tuning
procedure to a concrete trust model that is designed for result
verification in desktop grids (e.g., SETI@home [4]). As a
result, we find a trust model configuration that will provide
the highest expected utility against rational attackers.

Organization: The remainder of this paper is organized
as follows. In Sect. II, we model the deployment of a trust
model as a game. We present the procedure for optimizing the
trust model configuration in Sect. III. In Sect. IV, the proposed
approach is applied to tune a concrete trust model. We discuss
the approach in Sect. V. Finally, we review related work in
Sect. VI and draw conclusions in Sect. VII.

II. TRUST MODELS IN GAMES

A. Formalization

We interpret the deployment of a trust model as a game
between the trust model user, called the “trustor”, against a
set of attackers and honest players. A game consists of a
sequence of a fixed number of rounds. In each round, the
trustor selects an opponent and requests some service σ. If the
selected opponent is honest, he acts in a predefined way (in
Sect. IV we will give more details on this). If the opponent
is one of the attackers, he can respond with some action α
chosen from a set of actions A.

The finite strategy space ST contains all possible configu-
rations of the considered trust model1. So, a strategy sT ∈ ST

determines for a given game history how the trustor decides
which service σ to request from which opponent in the next
round. The possibly infinite strategy space SA of an attacker
contains any attack strategy that can be deployed against the
respective trust model. These strategies describe which action
α an attacker will choose for a given game history and a
requested service σ.

For each pair (σ, α), two functions UT and UA define, for the
trustor and the attacker respectively, the real-valued utilities for
a single round where the trustor requests σ, and the opponent
responds with α. Another utility function UT : ST ×SA 7→ R
defines the expected utility of the trustor for an entire game.
Analogously, a function UA : ST × SA 7→ R defines the
expected utility of an attacker for an entire game. Table I
illustrates the payoff matrix containing the expected utilities
for an entire game. Rows represent strategies of the trustor

1To ensure that ST is finite, parameters of the trust model have to be bound
if necessary, and continuous parameters have to be discretized.
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TABLE I
PAYOFF MATRIX FOR AN ENTIRE GAME

sA1 sA2 . . .

sT 1
UT (sT 1, sA1), UT (sT 1, sA2), . . .
UA(sT 1, sA1) UA(sT 1, sA2)

...
...

...
. . .

sT n
UT (sT n, sA1), UT (sT n, sA2), . . .
UA(sT n, sA1) UA(sT n, sA2)

(trust model configurations), and columns represent attack
strategies. We write (ST , SA)-game for a game where a trustor
and an attacker can choose from strategy spaces ST and SA

respectively. Analogously, we write (sT , sA)-game for a game,
where a trustor and an attacker play strategies sT and sA

respectively.

B. Stackelberg Competition

We analyze an (ST , SA)-game in the form of a Stackelberg
competition (see [5, pp.67–69]). In a Stackelberg competition,
the first player, the so-called “leader”, chooses his strategy
first. The second player, the “follower”, can then choose his
strategy with the knowledge of the leader’s strategy. In our
case, the trust model user represents the leader, who has to
choose a trust model configuration sT ∈ ST as his strategy.
The attacker takes the role of the follower and can choose
a strategy sA ∈ SA that is a (best) response to the concrete
configuration of the trust model. It is reasonable to consider
the deployment of a trust model as a Stackelberg competition,
since the attacker can in general observe and analyze a trust
model for an extended period before he eventually attacks the
model under a different identity.

Stackelberg competitions originally address the situation
where two firms compete by varying output levels, and so the
payoffs of leader and follower are usually linked linearly. In
contrast, for the trust model deployment we want to consider
all kinds of payoff matrices. We will see in the next section that
a similar reasoning as for the original Stackelberg competition
is still possible.

III. CONFIGURATION PROCEDURE

In this section we describe the procedure for tuning the
parameters of an evidence-based trust model. In part III-A,
we detail a game-theoretic solution concept that yields a Nash
equilibrium [6]. We then describe the tuning procedure in parts
III-B and III-C.

A. Selecting a Nash Equilibrium

In what follows, we assume perfect rationality of the
players: they know how to maximize their utilities and act
accordingly. Since there might be several best responses by
an attacker to a trust model configuration, we assume the
worst case for the trustor and let the attacker, in a second
step, minimize the trustor’s utility. This is reflected by the
following notation.

Notation 1: For an (ST , SA)-game and sT ∈ ST ,
br*(sT ) ∈ SA denotes a best response to strategy sT that

TABLE II
PAYOFF MATRIX FOR AN ENTIRE GAME WHEN CONSIDERING ONLY BEST

RESPONSES br*

br*(sT i)

sT 1
UT (sT 1, br*(sT 1)),
UA(sT 1, br*(sT 1))

...
...

sT n
UT (sT n, br*(sT n)),
UA(sT n, br*(sT n))

causes for T the worst utility among all best responses to sT

(if there are several). Formally, for all sT and any br*(sT ) it
holds:

∀sA ∈ SA.
[
uA(sT , sA) ≤ uA(sT ,br*(sT ))

]
(1)

∧
[
uA(sT , sA) = uA(sT ,br*(sT )) (2)

⇒ uT (sT , sA) ≥ uT (sT ,br*(sT ))
]
. (3)

Using this notation, we define a new solution concept
similar2 to the Stackelberg outcome [5] as follows:

Definition 1 (Stackelberg* outcome): Assuming a rational
attacker in a (ST , SA)-game, strategy pair (sT ,br*(sT )) is
a Stackelberg* outcome if there is no other strategy s′T ∈ ST

for which the following holds:

uT (s′T ,br*(s′T )) > uT (sT ,br*(sT )) . (4)

In other words, a leader will choose a configuration sT

that maximizes his utility knowing that a rational follower’s
strategy is to play br*(sT ).

Theorem 1: A Stackelberg* outcome constitutes a Nash
equilibrium.

To prove Theorem 1, we have to show that for a Stackel-
berg* outcome, players cannot get greater utilities by unilat-
erally changing their strategy.

Proof: Let (sT ,br*(sT )) ∈ ST × SA be a Stackel-
berg* outcome. The trustor will not change his strategy to
some different s′T ∈ ST because he knows that the attacker
would then play br*(s′T ) which would not cause a higher
utility for the trustor – because following Def. 1 we have:

uT (sT ,br*(sT )) ≥ uT (s′T ,br*(s′T )) .

But the attacker also has no incentive to play a different
strategy sA ∈ SA with sA 6= br*(sT ), because his utility
could not increase (see eq. 1).

B. Configuration

To find an optimal trust model configuration, we search
for a Stackelberg* outcome. For this, we need to consider
a restricted payoff matrix as shown in Table II. As before,
rows represent the strategies of the trustor, i.e. trust model
configurations. The only column now represents the best
responses br* to the corresponding trust model configuration.
From this matrix the trustor selects the row strategy for which

2The actual difference is that we consider all kinds of payoff matrices and
that the follower minimizes the leader’s utility in a second step.
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his expected utility is maximal. This yields a Nash equilibrium
as shown in the previous section.

The restricted matrix assumes that we know the best re-
sponses of an attacker for each trust model configuration. In
the following section, we show how to efficiently find best
responses of an attacker in huge attack strategy spaces.

C. Finding Best Responses

We want to find the best response of an attacker to a
given configuration of a trust model. However, the attacker
can choose from a huge set of strategies, and so we do not
want to play a game for every possible attack strategy to see
how effective the strategy would be. The idea is therefore to
search for the best response in the space of attack strategies.
To this end, we employ a genetic algorithm that starts with
a finite set of strategies, and lets the strategies evolve, until
eventually a best response is found. In the following we will
first specify the components of the genetic algorithm and then
show how to define the attack strategy search space.

1) The Genetic Algorithm: A genetic algorithm is a
stochastic optimization technique that is inspired by the pro-
cess of natural selection (see [7], [8]). It starts with an
initial population of individuals whose parameters are set
randomly. By means of selection, reproduction and mutation
the population evolves over several generations, and optimizes
itself with respect to a fixed fitness function. The algorithm
usually stops if either the individuals cease to improve, or a
maximum number of generations is reached. The search is
performed with several individuals to reduce the probability
of getting trapped in local maxima [8].

For our purposes, we specify the different components of
the genetic algorithm as follows:

a) Individual: The individuals represent the attackers.
An individual is thus defined by a specific attack strategy. At
the beginning of the algorithm each individual is initialized
with a random attack strategy that is chosen from the attack
strategy space.

b) Fitness Function: The fitness of an individual using
a certain attack strategy sA (against a trust model with
configuration sT ) is given by the utility function UA(sT , sA).
The value of the utility function is determined by averaging
over the utilities obtained in a statistically significant number
of simulated (sT , sA)-games.

c) Selection: An individual is selected for reproduction
with a probability that is proportional to the individuals’
fitness. Parameter S specifies the selection pressure, which
defines which impact (small) differences in the fitness have
on the resulting probabilities. To be more specific, if I is the
population of individuals and f(i) is the fitness of individual
i ∈ I , then we select i for reproduction with probability

eSf(i)∑
j∈I e

Sf(j)
. (5)

d) Reproduction: Given that two individuals have been
selected for reproduction, a new individual is created that takes
a part of the parameters from the “mother” and the other

part from the “father”. How this is done in a reasonable way
depends on the form of the attack strategies. In our algorithm,
mother and father are not necessarily part of the subsequent
generation. We make sure that the size of the population does
not change.

e) Mutation: For a certain fraction of the individuals that
result from reproduction, one or more parameters are mutated,
i.e. changed in a defined way. To a continuous parameter one
can for instance add a random number following a gaussian
distribution. Again, this depends on the form of the attack
strategies.

f) Termination: The algorithm terminates if either of the
following happens:
• the fitness of the best individuals of a certain number of

consecutive generations does not change significantly,
• a certain number of generations has been reached. In

our case, where the fitness function is computed by
means of simulation, this points to the case that in an
earlier generation an improbably high average utility
was reached. As a countermeasure the number of games
averaged over should be increased.

2) Attack Strategy Search Space: Let A be the set of all
possible actions α an attacker can take in a single interaction.
Then the attack strategy space for a game with r rounds is
given by Ar. This space contains however many inefficient
attack strategies, and therefore we build the space by adding
strategies to the empty set (∅), instead of removing strategies
from Ar. To be more specific, we define a set of (sophisti-
cated) basic strategies, each of which is parameterized with
a finite set of parameters. The more comprehensive the set
of sophisticated strategies is, the more likely it contains the
actual best response. The drawback of this approach is that we
might forget important attack strategies. As a consequence, the
parameter settings selected by our tuning procedure would not
be optimal. However, we clearly need to restrict the set Ar, if
r is large. Note that by adding only a selection of attacks to
the search space, a trust model can be optimized specifically
against these attacks.

In Sect. IV-B2, we will give an example for how the
parameterized attack strategies can be defined. The resulting
space is still very huge, which is why we employ the genetic
algorithm for searching in it.

IV. APPLICATION

In this section, we use the above proposed procedure to
optimize a trust model’s configuration. The trust model that
we consider is based on previous work [9]. We first describe
this trust model and show which parameters can be optimized.
Then, the utility functions for both trustor and attacker are
specified and the implemented attack strategies are detailed.
Finally, we present the results of the optimization procedure.

A. Trust Model with Uncertainty

The trust model allows for acquiring information from
possibly untrustworthy sources. The model addresses the case
where the correctness of the acquired information cannot
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master

workerpool

1.) select worker

2.) request σ=(M,N)

3.) reply α=(e(M),e(N))

malicious workers

Fig. 1. Trust Model Scenario.

be verified easily. This problem exists in particular in the
distributed computing domain, where computations are out-
sourced but the results could not be verified, because no
efficient verification scheme is known for general computa-
tions [10]. More precisely, the trust model is intended for
the use in desktop grid systems [11] where a master (the
trustor) delegates work units to autonomic workers (who can
be attackers).

The basic idea of the trust model is simple (see also Fig. 1).
At the beginning, the master selects a worker to whom a
request will be sent. Then, the master creates a request σ
by merging a set M that contains m work units (the results
to these will not be verified), with a set N that contains
n challenges, i.e. work units for which the correct result is
already known or can be determined. The master submits the
request to the selected worker and awaits a response α. By
verifying the results for the challenges, the master can estimate
the error rate of the results for the remaining work units. For
this, the model assumes that the correctness of the results is
statistically independent, and that challenges are chosen in a
way such that a worker is not able to distinguish them from
real work units. Then the error rate of M , written e(M), can
be estimated as follows: If n⊕ correct and n	 incorrect results
to the challenges are found, the estimated error rate ê(M) for
the work units in M is given by (see also [9]):

ê(M) :=
n	 + 1

n⊕ + n	 + 2
. (6)

In the considered scenarios, an error rate te > 0 in M is
acceptable. This is for example the case for applications in
the field of image or video rendering, or statistics appli-
cations [12]. If the estimated error rate is higher than the
tolerable error rate te, the entire response α is discarded.

Since the verification of a result of a challenge can be costly
(in the grid scenario it is in general as costly as finding a result
to a real work unit), we want to have |N | � |M |. However,
the fewer challenges we use, the higher is the probability that
we over- or underestimate the actual error rate of the results
in M . At this point, we use trust as a concept to keep the
number of challenges as small as possible. If the master has
some evidence that a worker is trustworthy, he will reduce the
number of challenges. This is detailed in the following.

1) Trust and Uncertainty Values: To estimate the trustwor-
thiness of a worker, we first process the evidence we have
collected so far with that worker.

Suppose we find n⊕ correctly computed challenges by
worker w in interaction i, and suppose aw,i−1 represents the
positive evidence with worker w up to interaction i. Then we
update the positive evidence with worker w for interaction i
as follows:

aw,i = A · n⊕ + (1−A) · aw,i−1 , (7)

where A is the so-called aging factor. The aging factor is
one of two parameters in our trust model. It determines how
strongly older evidence shall be weighted in relation to more
recent evidence.

Analogously we compute negative evidence with worker w
based on the number n	 of incorrectly computed challenges
in interaction i, and the negative evidence up to interaction
i− 1:

bw,i = A · n	 + (1−A) · bw,i−1 . (8)

Before we have made any experience with worker w we set
the initial evidence to aw,0 = bw,0 = 0.

Based on the positive and negative evidence, we define the
trust value for worker w as the mean of a beta distribution
(for details see [9]):

t(w, i) :=
aw,i + 1

aw,i + bw,i + 2
. (9)

Thus, the initial trust value for any worker is t(w, 0) = 0.5.
Our trust model computes also another value for each

worker, called uncertainty. This value reflects how uncertain
we are about a trust value. The uncertainty value for a worker
w in interaction i is given by the normalized variance of a
beta distribution (for details see [9]):

u(w, i) := 12 · aw,i · bw,i

(aw,i + bw,i)2(aw,i + bw,i + 1)
. (10)

2) Number of Challenges: In [9], we showed how a number
of challenges can be found that is optimal in respect to the
error estimation. We will use this optimal number as minimum
number of challenges used by the trust model (unlike proposed
in [9]). This way, no attacker can ever really harm the system.

To determine this optimal number of challenges one first
has to define the costs that one challenge causes (cc), and the
costs that one erroneous work unit would cost (cd). Then the
expected costs can be computed as follows:

c(m,n) = n ∗ cc +m ∗ cd ∗ d(m,n) , (11)

where d(m,n) is the expected estimation error when using
n challenges to estimate the error rate of the m responses to
the real work units (for details see [9]). To find the optimal
number of challenges, c(m,n) has to be minimized.

In our experiments, we set the costs to cc/cd = 1/10, and
use in each round m = 100 work units. The expected costs
c(m,n) for this setting are shown in Table III for m = 100. So,
the minimal number of challenges we should use is nmin = 5.
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TABLE III
EXPECTED MISESTIMATION AND COSTS FOR m = 100.

n d(100, n) c(100, n)

1 0.200 21.048
2 0.171 19.127
3 0.152 18.212
4 0.138 17.841
5 0.128 17.797
6 0.120 17.968
7 0.113 18.294
8 0.107 18.726
9 0.102 19.251

10 0.098 19.837
...

...
...

However, this small nmin does not allow to fast learn about
the trustworthiness of a worker. Therefore, we start with a
rather high number of challenges (n = m = 100), and reduce
this number as soon as we know the worker better. In order
to determine how to reduce this number, we use the trust- and
uncertainty values. For this, the following should hold:
• the more trustworthy a worker is thought to be, the less

challenges are used, and
• the more uncertain one is about the trustworthiness esti-

mate, the more challenges are used.
These criteria are met by the following formula:

n = nmin + (m− nmin)(1− t+ ut) . (12)

For m > nmin, the formula also guarantees that at least nmin

and at most m many challenges are used.
3) Choosing a Worker: For selecting the next worker, we

use the boltzmann exploration approach [13, pp.328–329]. In
this approach, the probability for choosing worker w from a
set of workers W in round i is given by (we use the trust
value from eq. 9 as the estimated “value of the decision”):

P (w, i) =
eB·t(w,i)∑

v∈W eB·t(v,i)
, (13)

where parameter B is the second parameter of our trust model.
Basically, the smaller B is, the more impact the trust value has
on the selection process. Note that we use the same approach
in the selection process of the genetic algorithm (eq. 5).

However, the boltzmann exploration approach does not
account for the amount of information we have collected so
far, and how recent this information is. Therefore, we extend
eq. 13 with the measure for uncertainty from eq. 10:

P ′(w, i) =
1− u(w, i)∑

v∈W (1− u(v, i))
· P (w, i) . (14)

This weighting favors workers whose trustworthiness is more
certain over those for which it is less certain.

B. Utilities and Attack Strategies

1) Utility Functions: Let σ = (M,N) be a request that
the master delegates to a certain worker. Furthermore, let α =
(e(M), e(N)) be the response of the worker, where e(M) and

e(N) denote the error rates for the results to the real work
units M and the challenges N respectively. Then we use the
functions described in the following to compute in each round
the utilities for the master and the chosen worker.

a) Master: Independently of the response of the worker,
the master pays the costs of the challenges (−n). If the
estimated error rate is acceptable (i.e., ≤ te), the master
benefits from m−m · e(M) correct results. This gives:

UT (σ, α) =

{
−n, if ê(M) > te

m−m · e(M)− n, if ê(M) ≤ te
(15)

The different terms could be weighted with different cost
parameters, e.g., an incorrect result might cost more than the
use of a challenge. However, to keep things simple, we set all
costs to 1.

b) Attacker: If the response of the attacker is discarded,
the attacker does not earn anything. If it is not discarded,
he is attributed m + n computations and saved resources for
additional m ·e(M)+n ·e(N) many work units. These “saved
resources” can be spent on other work units and so are simply
added to the utility. This gives:

UA(r) =

{
0, if ê(M) > te

m+ n+m · e(M) + n · e(N), if ê(M) ≤ te
(16)

Note that in this context our initial trust value of 0.5 makes
whitewashing attacks ineffective. In whitewashing attacks
(usually known in the context of reputation systems [14]),
workers with low trust values leave a system and reenter with
a new identity, in order to “reset” the trust value (in our case
to 0.5). However, in our case this only makes sense if the
trust value of a worker dropped below 0.5; and in order to
get t < 0.5 a worker must have returned a response with an
error rate ê(M) > 0.5 – but already for a detected error rate
ê(M) > 0.1, a worker gets no payoff (see eq. 16) and so has
no incentive to act in this way.

2) Attack Strategies: Attack strategies against the trust
model from Section IV-A consist in determining for each
interaction the ratio of wrong results in the response α. We
modeled the following basic attack strategies, each of which
was parameterized with up to 2 parameters p1 ∈ [0, 1] and
p2 ∈ N. The waveforms some of them are named after
correspond to the evolution of the error rates:

RANDOM For each interaction draw error rate randomly
from a uniform distribution in [0, p1].

CONSTANT Choose constant error rate of p1.
DIRAC Reiterate: Pretend to be a honest worker for a

number of p2 rounds, then return a response
with error rate p1.

SINE For the ith interaction, choose error rate
p1 ·(0.5+0.5·sinp2(i)) , where p2 parameter-
izes the frequency of the sine function. The
constants 0.5 normalize the sine function into
[0, 1].
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TABLE IV
PROPORTION OF ATTACK STRATEGIES AMONG BEST RESPONSES

RANDOM CONSTANT DIRAC SINE SQUARE SAW
0.086 0.143 0.429 0.171 0.086 0.086

SQUARE Similarly to SINE, choose error rate p1·(0.5+
0.5 · sgn(sinp2(i))).

SAW For the ith interaction, choose error rate p1 ·
( i mod p2

p2
).

Note that the CONSTANT strategy also describes the behavior
of honest workers which do return errors with a very low
error rate p1. We modeled the strategy (s ∈ {1, . . . , 6}) itself
as another parameter that the attacker had to choose. So the
genetic algorithm optimized the pair (s, p1, p2) in order to
maximize the attacker’s utility against a given trust model
configuration.

C. Experiments and Results

For the experiments, we set the tolerable error rate to
te = 0.1, which could be adapted if the model was optimized
for a specific application area. To determine a sufficiently
significant mean utility, each game consisted of 210 rounds,
and was played 29 times. For the genetic algorithm we found
that for 27 individuals, a mutation rate of 0.1, a selection
pressure of S = 15 (we used no explicit elitism though) and a
convergence criterion of 0.1, the algorithm performed well. If
several best responses to the same trust model configuration
are found, the one with the worst utility for the master is
chosen (see Def. 1). In conformance with [15] we considered
an error rate of 0.0022 for the honest workers. We choose a
fraction of 0.1 of malicious workers.

In our experiments we found that the DIRAC attack strategy
was among all considered strategies by far the most effective
one, and after several generations, other strategies often “died
out”. Table IV shows the percentage of the different strategies
among the best responses.

TABLE V
THE MASTER’S UTILITIES WHEN ASSUMING BEST RESPONSES OF THE

ATTACKER (THE MAXIMUM UTILITY IS FRAMED).

sT UT (sT , br*(sT ))
A B

0.1 1.0 80.9
...

...
...

0.4 21.0 83.0
...

...
...

0.9 26.0 81.7

Table V shows a small excerpt of the utilities for the
master against the best responses of malicious workers. Also
considering the utilities not shown in the table, a peak is
reached at (A,B) = (21.0, 0.4). This is also illustrated in
Fig. 2 and Fig. 3, which show the impact of parameters A
and B on the utility UT . Figure 2 shows the utilities for
varying A, where each line corresponds to one value of B
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Fig. 2. Trustor Utility UT for varying A (and different B < 14).
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Fig. 3. Trustor Utility UT for varying B (and 0.1 ≤ A ≤ 0.9).

smaller than 14. Clearly, for any B a peak in the utility is at
A = 0.4. For higher B, the impact of A became weaker. Figure
3 shows the impact of B on the utility, where for each B
several values of A are considered. The figure reveals that the
utilities UT increase for increasing B up to 21 and then drop
off. For higher values of B, the results appeared to become
more and more random. This can be explained by the fact that
for higher B, the selection of the workers depends less on their
trust values and so, workers are more randomly chosen. As
a consequence, the variance in the payoffs of the trustor gets
bigger. Hence, too high values of B are not desirable since they
make the performance of the trust model hardly predictable.
To counter this, one could linearly decrease the value of B
over time, as proposed in [13]. Then, the initial value and the
gradient would be the parameters to be optimized.

V. DISCUSSION

The strategies of the trustor are concrete trust model con-
figurations (see Sect. II-A). Thus, our solution concept yields
an optimized but fixed trust model configuration. In game-
theoretic terms this means that the trustor basically plays a
pure strategy. We believe that to compute the payoff for a
mixed strategy, i.e. a strategy where the trustor uses different
configurations with certain probabilities, would hardly be
feasible in practice. The reason for this would be the complex
dynamics in a game, e.g. caused by the honest players and the
dynamic adaptation of the attackers to the changes in the trust
model configuration. This raises the question of whether game-
theory is the right approach for handling this complexity. We
rather suggest that a configuration determined by a procedure
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like ours serves as a starting configuration, and the trust model
then adapts according to feedback it gets from its environment.

Instead of genetic algorithms, other search techniques could
be used to search the attack strategy space. We have chosen
a genetic algorithm, because it can flexibly be adapted to
very different search spaces. Actually, depending on the attack
strategy space, the fitness function can be nonlinear or even
partially non-continuous – if this is taken to extremes, even
a genetic algorithm will struggle. Furthermore, the structure
of genetic algorithms makes them good candidates for par-
allelization, and fault tolerance seems to be inherent [16].
However, there are also reasons against genetic algorithms in
our case. First, the configuration of the genetic algorithm itself
can be tricky. In our scenario (Sect. IV), the results lead us to
believe that we had succeeded in tuning the genetic algorithm
sufficiently. Nevertheless, genetic algorithms do not guarantee
convergence to global optima. Finally, the performance of our
genetic algorithm suffers from the expensive computation of
the fitness function. This is due to the fact that a game has
to be repeated often enough to make the results statistically
significant. Hence, a parallel execution is advisable.

VI. RELATED WORK

A. Evidence-Based Trust Models

1) Parameter Usage: Many existing evidence-based trust
models are parameterizable. Buchegger and Le Boudec [17]
use several aging factors and give a rule of thumb for how
to choose them. Wang and Vassileva use learning rates [18]
which correspond to the aging factor in our model. Capra and
Musolesi [19] use aging factor-like parameters that have to be
defined subjectively. In the FIRE model [20], a “recency scal-
ing factor” (an aging factor) and the “temperature” (parameter
B in our model) are used. Also other models [21]–[24] use
tunable aging factors, and [25] use an aging function. In [26],
a modifiable threshold determines when an individual can be
considered as trustworthy. Parameters for balancing trust and
reputation values are used in [27]–[29]. How to systematically
tune all these parameters has to the knowledge of the authors
not yet been addressed.

2) The ART-testbed: In [30], the ART testbed was in-
troduced to enable a comparison of the various trust- and
reputation models proposed in the literature. In this testbed,
several agents, of which each employs a certain trust model,
compete in a turn-based game. The performance of an agent
is measured both from an agent- and a system-perspective
according to certain objective criteria. Still, the testbed itself
does not allow for optimizing the parameters of trust models.

3) The Beta Distribution for Trust: The way our trust model
computes the trust and uncertainty values is based on the mean
and the variance of the Beta distribution. Also other evidence-
based trust models use the beta distribution to this end ([17],
[21], [23], [31]–[35]). However, the way how the experiences
are processed, and how trust and uncertainty values are used
for decision-making, differs from model to model.

B. Result Verification

Sarmenta [12] proposed to combine redundancy with spot-
checking, where workers are assigned computations, for which
the correct result is already known, with a certain rate. The au-
thor estimates the credibility of workers in order to reduce the
overhead of the verification process. Workers that get caught
returning incorrect results are blacklisted and their results are
ignored (if identities can be checked). In their model, attackers
are described by a Bernoulli process and return correct and
incorrect results with a specific probability. Assuming this
attacker model, the author attains probabilistically guaranteed
levels of correctness. However, their model does not account
for attackers that follow different strategies, as for instance the
strategies described in Section IV-B2. Also, their model can
cause honest workers to accidentally get blacklisted, which
might increase the costs in the long run.

The framework in which our trust model operates ([9]) is
closely related to “Quiz” [36], a scheme for result verification
in peer-to-peer grids. In their scheme, a master delegates a
whole package of computations to a worker. In such a package,
quizzes are interspersed for which the correct result is known
(as in our case). If one of the quizzes is answered incorrectly,
the whole package is discarded and the trustworthiness of
the corresponding worker is reduced (by the use of some
trust model) and it is possibly blacklisted. Here, our model
is fundamentally different, since it is designed for scenarios
where a certain error rate te is tolerable. As a consequence,
their trust models assume each incorrect result as indication for
untrustworthiness, which is not the case in our model. Also,
the trust models they use do not account for uncertainty.

Germain-Renaud and Monnier-Ragaigne [37] proposed a
scheme for result verification in which they sequentially test
a set of work units (they “call an oracle” to this end), and
accept/reject as soon as it is statistically reasonable. Their
approach requires that the oracle verifies the work units at
runtime, whereas our model is applicable for cases where no
such oracle is available and prepared challenges can be used.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach for systematically
tuning parameters of evidence-based trust models. We first use
a genetic algorithm to search for an attacker’s best responses
against different trust model configurations. By then choosing
the configuration with the highest utility against the corre-
sponding best response, one finds a Nash equilibrium.

We hope that our work contributes to the development of
a general benchmark for evidence-based trust models. There
exist approaches that test competing trust models in specific
scenarios (e.g. [30], [38]). However, these can for instance
not be used to benchmark the trust model optimized in our
paper. A generic benchmark could for example optimize the
trust models against sets of attack strategies (as shown in this
paper), and then compare the expected utilities.

Our work gives a validated starting configuration for trust
models. The problem of how to adjust parameters at runtime in
order to react to the environment is a subject for future work.
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Also, in the tuning procedure that we explored, we fixed the
ratio of attackers and had all of them using the same strategy in
a game. We plan to extend this and consider different fractions
of attackers, and attackers that use diverse strategies. Finally,
we assume that attackers act perfectly rational, i.e. they know
their best response and choose it. Here, more elaborate game-
theoretic solution concepts that also account for the case that
opponents choose suboptimal strategies would be helpful (e.g.,
see [39]).
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