
Collusion Detection for Grid Computing

Eugen Staab and Thomas Engel
Faculty of Science, Technology and Communication

University of Luxembourg
L-1359 Luxembourg

{eugen.staab,thomas.engel}@uni.lu

Abstract

A common technique for result verification in grid com-
puting is to delegate a computation redundantly to different
workers and apply majority voting to the returned results.
However, the technique is sensitive to “collusion” where a
majority of malicious workers collectively returns the same
incorrect result. In this paper, we propose a mechanism
that identifies groups of colluding workers. The mechanism
is based on the fact that colluders can succeed in a vote
only when they hold the majority. This information allows
us to build clusters of workers that voted similarly in the
past, and so detect collusion. We find that the more strongly
workers collude, the better they can be identified.

1 Introduction

Problem Context and Motivation In grid computing, a
master assigns computational tasks to resources identified
as workers, which are expected to execute the tasks and re-
turn their results. Since the master has no control over the
workers, it cannot be sure whether a returned result is ac-
tually correct or not. This is especially relevant in the sce-
nario of desktop grids [12]. Workers may return incorrect
results because they fail due to overclocking or software er-
rors [13, 21], because they want to harm the master, or be-
cause they want to save resources (e.g., by returning random
results). Conventional security mechanisms can ensure data
authenticity and integrity [20]. However, these mechanisms
cannot ensure the correctness of received results. For spe-
cific computations, simple checkers can be used to verify
results in an efficient way (e.g., see [24]). Unfortunately, no
such mechanism is known for general computations [10].

A common principle to tackle this issue in the general
case is to rely on redundancy (e.g., see [1]): a computa-
tion is redundantly outsourced to several randomly selected
workers; majority voting is applied to the set of returned
results to decide in favor of the result that appears most of-

ten. This approach tolerates a certain number of incorrect
results in a vote. However, it does not resist a majority of
colluding workers that collectively return the same incorrect
result. Even though workers are randomly selected for each
vote, with the possibility of massive attacks (e.g., [4]), the
probability for a majority of colluders becomes significant.
Therefore, mechanisms are required that detect colluding
behavior of malicious workers.

Approach and Contribution We present a mechanism
for collusion detection that exploits the information of how
often pairs of workers are together in the majority/minority
of votes, and how often they are in opposite groups. In
cases, where colluding workers win a vote, they are always
together in the majority, whereas honest workers together
form the minority. We first show theoretically that this fact
allows a line to be drawn between honest and colluding
workers. Secondly, we propose an algorithm that uses graph
clustering to discover this division. Finally, we evaluate the
algorithm in terms of accuracy and running time, using two
different graph clustering algorithms from the literature. We
find that, given a certain number of observations, our mech-
anism can successfully detect sophisticated colluders.

Organization The remainder of this paper is organized
as follows. In Sect. 2, we detail the model and assump-
tions used in our work. In Sect. 3, we conduct a theoretical
analysis, which forms the basis for the collusion detection
algorithm proposed in Sect. 4. We describe the implemen-
tation of the algorithm in Sect. 5 and evaluate its accuracy
and performance in Sect. 6. We outline related work in
Sect. 7 and draw conclusions in Sect. 8.

2 Model and Assumptions

In this section, we first detail how the redundancy and
majority voting principles are used in our work. Then, we
specify the attacker models which are used in the theoretical
analysis and on which our mechanism will be evaluated.

9th IEEE/ACM International Symposium on Cluster Computing and the Grid

978-0-7695-3622-4/09 $25.00 © 2009 IEEE

DOI 10.1109/CCGRID.2009.12

412

2.1 Redundancy and Majority Voting

We assume a model where a computation is divided into
work units. Each work unit is redundantly assigned to a set
of 2m− 1 workers (m ∈ N,m > 1). We call m the level of
redundancy. For each vote, the set of workers is randomly
selected from the overall population of potential workers.
For simplicity, we assume that this population is static, i.e.,
workers do not enter or leave the system. This assumption
is reasonable since every evolving population can be frag-
mented into a sequence of static snapshots. Furthermore,
we allow any fraction smaller than 0.5 of malicious work-
ers in the population. This assumption is needed later on for
deciding which clusters contain the malicious and which the
honest workers.

In our model, majority voting is applied in order to de-
termine which result is accepted as correct result: a result
is accepted iff there is a majority of workers that returned
this result. As it will play an important role in our work, we
need to precisely define what majority and its counterpart
minority means:

Definition 1 (Majority and Minority) The majority of a
vote is the strictly largest group of workers that returned
identical results. If there is no such group, then there is no
majority. All workers that do not belong to the majority of
the vote, and only those workers, belong to the minority.

Majority voting makes redundant result verification more
robust because honest workers sometimes fail and return
wrong results [11]. But also, majority voting tolerates any
number of independent or colluding malicious workers as
long as the correct result is returned by the majority. An
odd number of redundant requests (2m−1) is used, in order
to reduce the probability of ties in votes. At this point, we
make the reasonable assumption that if two honest workers
make both an error in their computation, then their com-
puted results differ.

2.2 Attacker models

We assume that malicious workers can efficiently com-
municate with each other and can rapidly reach collective
decisions. This assumption is backed by the Sybil Attack
scenario [4] where an attacker creates several identities and
lets them appear as distinct individuals. As a consequence,
malicious workers can collude by deciding which wrong re-
sult to return collectively. We call this kind of attacker col-
luder and consider the following two collusion strategies:

UC Unconditional colluders try always to collude, i.e.,
each time a colluder is involved in a vote, he returns
the same incorrect result as other colluders in this vote.

CC Conditional colluders collude only if they know that at
least m workers in the vote are colluders. Otherwise
they return the correct result.

Conditional colluders cheat in all votes where they know
they will succeed. There are only few unlikely cases where
they would win but do not collude (e.g., a vote with m = 3,
two colluders, and two failing honest workers). So, condi-
tional colluders are basically as effective as unconditional
colluders. But at the same time, they are harder to detect,
because in all votes where they most probably would not
win, they behave as if they were honest. However, colluders
only know to which other colluders a certain work unit has
been assigned, but do in general not know how many honest
workers are involved in a vote. Therefore, the CC strategy
requires that colluders know the level of redundancy m in
order to make their decision1. Thus, UC and CC are sophis-
ticated strategies for the scenarios where attackers know m
(CC) or not (UC). Although we focus in this paper on UC
and CC, the idea on which our mechanism bases is of gen-
eral nature and applies also to other attacker models.

3 Theoretical Analysis

In this section, we describe the main idea of our approach
and back it up by means of a probabilistic analysis.

3.1 Approach

Our aim is to identify malicious workers within a given
set of workers. To this end, we introduce a distinctive fea-
ture that reveals the borderline between the set(s) of mali-
cious and the set of honest workers. This distinctive feature
is based on the following observation.

For malicious workers, the only effective way to attack
the redundancy principle is to collude, i.e., to return collec-
tively the same incorrect result. Colluders will succeed in
votes where they hold the majority. But in such votes, all
the honest workers will form the minority. So, we count
for each pair of workers how often they are together in the
same group (majority/minority), and how often they are in
opposite groups. As we will see later, the counts for a pair
of workers provide statistical evidence about the relation
between the two workers, i.e., whether they are both mali-
cious, both honest or one is malicious and one is honest. We
use the counts to estimate the distinctive feature, which we
call “correlation”. This feature has the nice property that,
no matter by what collusion strategy, attackers cannot influ-
ence the counts for pairs consisting of two honest workers.
Moreover, a colluder can put himself in the same group as a
honest worker only by withdrawing from collusion.

1Note that this advocates a variation in the level of redundancy m, be-
cause it would make the CC strategy less feasible in practice.

413

Table 1. Parameters for computing correla-
tion pc

m a work unit is requested 2m− 1 times
pmal fraction of colluders in the population
pf failure probability of a honest worker
ph probability of picking a honest worker that returns

a correct result, i.e., ph = (1− pmal)(1− pf)
pi probability of picking a honest worker that returns

an incorrect result, i.e., pi = (1− pmal)pf

In the following paragraphs, we analyze the feature and
find that the more malicious workers collude, the more the
feature helps distinguishing them from honest workers.

3.2 Correlation

Given that two specific workers are together in a vote, we
define correlation pc as the probability that the two work-
ers are together in the same group (majority/minority) of
that vote2. That is, if pc is high for a specific pair of work-
ers, then these two workers are often together in the same
group, and not so often in opposite groups. It follows that
for a given series of n independent votes where both work-
ers participated in, the number of votes, in which they were
in the same group, is binomially distributed with parameters
n and pc.

3.2.1 Computing correlation

Let4 denote the set of workers in the minority of a specific
vote, and 5 be the set of workers in the majority. Since
the events that any two workers a and b are together in the
majority/minority of a vote are mutually exclusive, we have:

pc :=p({a, b} ⊆ 4 ∨ {a, b} ⊆ 5) (1)
=p({a, b} ⊆ 4) + p({a, b} ⊆ 5) . (2)

This way, we can use enumerative combinatorics to com-
pute pc for each constellation of workers, i.e., for pairs con-
sisting of two malicious, two honest or one malicious and
one honest workers. The computation of pc depends on cer-
tain parameters, which are listed in Table 1. In the follow-
ing, we will demonstrate how pc can be computed for a pair
of two honest workers (we will write for such a pair “hon-
est&honest” or short “h&h”). We will only address the case
of unconditional collusion (UC) here. The derivations of
the formulas for the pairings malicious&malicious (m&m)
and malicious&honest (m&h), as well as for other collusion
strategies such as CC can be found in [19].

2We do not use the common correlation coefficient ρ [14, p. 103],
because it measures the linear relationship between quantitative variables.

Both workers in4 (h&h, UC) If honest workers a and b
are together in a vote, they are both in the minority in either
of the following cases (numbers refer to equations below):

• both return incorrect results (3) (see Sect. 2.1 for the
assumption that the two results differ),

• one of them (4) or both (5) return the correct result, but
there are at least as many colluders as correct results in
the vote,

• exactly one of them returns the correct result and apart
of them there are only failing honest workers (6).

Since these cases are mutual exclusive, we can add them up:

p({a, b} ⊆ 4) =pf
2 (3)

+ 2(pf (1− pf))P (1) (4)

+ (1− pf)2P (2) (5)

+ 2(pf (1− pf))pi
2m−3 , (6)

where P (k) denotes the probability that at least as many
colluders are in the vote as honest workers returning the
correct result; the k (k ∈ {1, 2}) specifies how many of the
two honest workers a and b return the correct result. To
compute P (k), we need to look at the 2m − 3 remaining
workers in the vote and sum up the probabilities of all cases
where the number of correct results plus k is not higher than
the number of colluders. Let index i denote the number
of colluders, and j denote the number of additional honest
workers in the vote returning the correct result. Then 2m−
3− i− j is the number of failing honest workers. We find:

P (k) :=
2m−3∑
i=k

(
2m− 3

i

)
pmal

i

·

min(2m−3−i,
i−k)∑
j=0

(
2m− 3− i

j

)
ph

jpi
2m−3−i−j .

(7)

Both workers in 5 (h&h, UC) If honest workers a and
b are together in a vote, they are both in the majority, iff:

• they both return the correct result ((1−pf)2), and there
are in total more honest workers that return correct re-
sults than colluders.

Analogously to the4-case, we can add the probabilities
for all possible voting outcomes (as above, i is the num-
ber of colluders, and j is the number of additional honest
workers returning the correct result):

p({a, b} ⊆ 5) = (1− pf)2
m−1∑
i=0

(
2m− 3

i

)
pmal

i

·
2m−3−i∑

j=max(i−1,0)

(
2m− 3− i

j

)
ph

jpi
2m−3−i−j .

(8)

414

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

co
rr
el
at
io
n

pmal

m&m
h&h
m&h

(a) UC case

0 0.1 0.2 0.3 0.4 0.5
pmal

m&m
h&h
m&h

(b) CC case

Figure 1. Correlation (m = 2, pf = 0.0022).

3.2.2 Correlation as Distinctive Feature

In this work, we will detail results of computations for a
subset of possible parameter settings (see [19] for a more
comprehensive analysis). We set the level of redundancy m
to the value of 2 (see [1]), i.e., a vote consists of three work-
ers. Furthermore, we use pf = 0.0022 as failure rate of
honest workers with reference to [11]. Figure 1 shows cor-
relations computed for the UC and the CC settings. Each
figure depicts, for a varying proportion of malicious work-
ers pmal, the correlation for m&m, h&h and m&h pairings.
Since we want to use the correlation to differentiate ma-
licious and honest workers, we need to check whether an
m&h pair of workers can be distinguished from m&m and
h&h pairs. In the UC case, the correlation of m&h pairs dif-
fers strongly from the correlation of m&m and h&h pairs,
almost independently of pmal. In the CC case, the correla-
tion of m&h differs increasingly with increasing pmal. Note
that in the CC case, the probability that malicious workers
win a vote decreases also with decreasing pmal – because
the probability of having m or more malicious workers in
a vote decreases, too. Thus, the more malicious workers
collude, the better they are identifiable.

While taking the results from [19] into account, where
we also examined other parameter settings and mixed col-
lusion strategies, we can conclude that correlation is either
a good feature for identifying the set of colluders, or it is
not, but then the colluders cannot sabotage effectively.

4 Algorithm

In the following, we first describe the overall procedure
of the algorithm for collusion detection (Alg. 1). Then, we
explain each of the called subroutines in more detail.

The algorithm takes as input a population of workers N ,
a set containing past voting outcomes VN for these work-
ers (i.e., how often pairs of workers were together in the
majority/minority), and a parameter for clustering P . The

Algorithm 1 Collusion Detection
1: procedure DETECT(N,VN , P)
2: M ← COMPUTE CORRELATION MATRIX(N,VN)
3: G← CONSTRUCT GRAPH(M)
4: {C1, . . . , Ck} ← CLUSTER(G,P)
5: Cmax ← max(C1, . . . , Ck) . Select largest cluster
6: S ← N \ Cmax . Take all but largest cluster
7: return S . Return IDs of suspects
8: end procedure

algorithm proceeds as follows. First, it estimates the corre-
lation for each pair of workers which results in correlation
matrix M (line 2). M is a symmetric matrix where rows
and columns represent workers; an entry Mij is the esti-
mate of the correlation between the two workers i and j.
We set Mii for all workers to 1 (perfect correlation). In line
3, an undirected weighted complete graph G is constructed,
where the workers constitute the vertices and the entries of
the correlation matrix are used as edge weights. In a next
step, the graph clustering algorithm partitions the graph G
into clusters of workers that correlate much (line 4). The
largest cluster is supposed to contain the strongly correlat-
ing honest workers, so it is selected (line 5) and subtracted
from N (line 6). The remaining part of N is returned as set
containing the suspect workers (line 7).

In Sect. 4.1, we describe in detail, how the correlation
for a pair of workers is estimated (line 2). In Sect. 4.2, it
is detailed how graph clustering is used to partition the set
of workers into honest and malicious workers (line 4). The
complexity of the algorithm is analyzed in Sect. 6.2.

4.1 Estimating the Correlation

For each pair of workers, we count in how many votes
they were together in the majority or the minority (c1), and
how often they were in opposite groups (c2). These num-
bers form the set VN . As mentioned in Sect. 3.2, the num-
ber c1 is drawn from the binomial distribution with c1 + c2
many experiments and the actual correlation pc as success
probability. We know that the beta distribution is the prior
distribution for binomial proportions [6, p. 34]. As a con-
sequence, the correlation of two workers can be estimated
by the beta distribution with parameters α = c1 + 1 and
β = c2+1. Hence, we choose the expected value of this dis-
tribution as the sample correlation p̂c, which is given by [6]:

p̂c :=
α

α+ β
=

c1 + 1
c1 + c2 + 2

. (9)

4.2 Graph Clustering

An important part of the algorithm consists in the graph
clustering method called in line 4. A graph clustering algo-

415

honest workers

suspect workers

w5 w6

w3 w4

w2w1

Figure 2. Clustering of a Graph (|N | = 6)

rithm takes a graph and one or more tuning parameters as
input. It removes a set of edges from the graph such that the
connected components of the modified graph form the clus-
ters (see also [2]). Graph clustering algorithms for weighted
undirected graphs usually try to find disjoint sets of vertices
that are strongly connected in terms of the edge weights. In
other words, when interpreting edge weights as similarity
measures, vertices within the same group should be similar
and vertices belonging to different groups should be dissim-
ilar. How this can be achieved depends on the concrete im-
plementation of the algorithm. The parameters passed to a
graph clustering algorithm determine the granularity of the
clustering, i.e., how much dissimilarity within clusters and
similarity in-between clusters is tolerated.

We showed in Sect. 3.2.2 that the correlation for m&m
and h&h pairs is higher than the correlation for m&h pairs.
This qualifies the correlation estimates to be used as edge
weights and so act as a similarity measure. A successful
graph clustering then outputs groups that contain only ma-
licious workers, and groups that contain only honest work-
ers. Figure 2 illustrates a clustering for a very small graph,
where thick edges indicate strong and thin edges weak cor-
relation. Since we assumed that more than 50% of the work-
ers are honest (see Sect. 2.1), the biggest cluster will very
likely contain the “heavily connected” honest workers. Our
algorithm outputs the union of all smaller clusters as set
of suspect workers. Therefore, our algorithm can also deal
with several independent groups of colluders. This also im-
plies that a collusion strategy, where m&m pairs keep the
correlation low in order to become indistinguishable from
m&h pairs, will not work.

5 Implementation

The implementation of the main part of Alg. 1 is
straightforward and is not detailed here. We rather want
to focus on the graph clustering algorithm called in line 4.

Several approaches for clustering undirected weighted
graphs have been proposed in literature (e.g., see [2]). For
our experiments, we chose two different algorithms, the
Markov Cluster Algorithm (MCL) [23] and Mininmum Cut

Tree Clustering [7], which we will call MinCTC. In [2],
MCL was shown to be more accurate than several other al-
gorithms. The authors did not test MinCTC and so we com-
pare it to MCL in this work. In the following, we describe
the choice of clustering parameters for the two algorithms.

5.1 MCL

MCL is based on the simulation of stochastic flows in
graphs. The only parameter for MCL is the inflation param-
eter I ∈ [2, 30] that has an impact on the level of granularity
of obtained clusterings. The evaluation in Sect. 6.1 shows
that the accuracy of the algorithm does not depend much on
an exact choice of this parameter.

To improve the accuracy, we propose to preprocess the
correlation values p̂c with an additional parameter θ. Since
MCL uses a probabilistic interpretation of the edge weights,
the relative differences between the correlation values can
be amplified by raising them to the power of some θ > 1.

5.2 MinCTC

MinCTC is based on the construction of minimum-cut
trees in graphs. In [9], the authors experimentally com-
pared different approaches for constructing mincut trees.
In our work, we use the GHs implementation (a variant of
the Gomory-Hu algorithm [22] using the source selection
heuristic) because it turned out to be more robust than other
codes [9].

Through experimentation we found that depending on
the setting, there is a particular range of suitable param-
eters. Below this range, the algorithm returns only one
single cluster containing all workers (underfitting). Above
this range, it returns as many clusters as workers, i.e., each
worker makes up its own cluster (overfitting). So, only for
parameters within the range, the algorithm may find suitable
clusterings – if it is assumed that there are colluders among
the workers. Therefore, we implemented binary search to
find a parameter that lies in this range and produces a spec-
ified number of clusters k (we used k = 2). If the search is
not successful, all workers are classified as honest (to avoid
false positives). As for MCL, we preprocessed the correla-
tion values in the experiments with different exponents θ.

6 Evaluation

The algorithm is evaluated in a setting as described in
Sect. 3.2.2 for a set of |N | = 100 workers and pmal =
0.1. It should be reemphasized here, that the feasibility of
the algorithm was shown theoretically for the other settings
as well [19]. Each run was averaged over 103 randomly
generated sets of voting outcomes VN . Each VN is based
on a certain number of observed votes – for the simulation

416

0
2
4
6
8
10
12
14

051015202530
0

0.2

0.4

0.6

0.8

1

F
-m
ea
su
re

#obs./edge

I

Figure 3. Accuracy with MCL (UC, θ = 1)

results we indicate the average number of observations per
edge in the graph (#obs./edge). In the following, we first
evaluate the algorithm’s accuracy. Secondly, we analyze the
complexity of the algorithm and compare the running times
of the two graph clustering algorithms MCL and MinCTC.

6.1 Accuracy

We measure the accuracy of Alg. 1 for MCL and
MinCTC and the two cases UC and CC. As is custom-
ary, we label the output of the algorithm with “true pos-
itive” (tp), “true negative” (tn), “false positive” (fp) or
“false negative” (fn). As accuracy measure, we use the f1-
Measure [15], which is computed as follows:

f1 :=
2 ·#tp

2 ·#tp + #fp + #fn
(10)

An f1-Measure of 1 occurs iff our algorithm returns a set of
suspects that contains all colluders but no honest workers.

6.1.1 Using MCL

Figure 3 shows the accuracy of the algorithm using MCL
for the UC case. No amplification θ has been applied. An
average of f1 = 1 first occurs for an average number of
4 observations per edge and inflation parameter I between
ca. 13 and 22.8. For more than 10 obs./edge, the algorithm
provides perfect accuracy for all possible parameters. MCL
showed problems for a small range of parameters 22.8 <
I < 23.3. For this set of parameters, MCL did not always
converge before 5 seconds, and returned a particularly high
ratio of false positives, which points to overfitting.

Figure 4 shows the accuracy of the algorithm using MCL
for the CC scenario. An almost perfect precision of f1 = 1
on average is not achieved before around 60 obs./edge. The
same high ratio of fp as for the UC case is observed here
for 22.5 < I < 23.3. For smaller θ the accuracy became
worse, and for θ = 1 the algorithm was not able to detect
colluders.

0
10
20
30
40
50
60

051015202530
0

0.2

0.4

0.6

0.8

1

F
-m
ea
su
re

#obs./edge

I

Figure 4. Accuracy with MCL (CC, θ = 20)

0
2
4
6
8
10
12
14

02468101214161820
0

0.2

0.4

0.6

0.8

1

#obs./edge

F
-m
ea
su
re

θ

Figure 5. Accuracy with MinCTC (UC)

To summarize, when using MCL, our algorithm can cope
both with the UC and the CC case. It works for broad sets
of parameter I and improves for an increasing number of
observations. For the CC case, a very high number of ob-
servations is needed until reasonable accuracy is reached.

6.1.2 Using MinCTC

Figure 5 shows the accuracy of the MinCTC variant of Alg.
1 for varying levels of amplification θ. The algorithm does
not succeed for less than 8 obs./edge. Also for a higher
number of observations, still a preprocessing of the corre-
lation values with a rather high exponentiation θ is needed
until the algorithm succeeds. As an advantage of this ten-
tative classification we found that in our experiments the
algorithm did not produce false positives.

The accuracy of the algorithm using MinCTC for the CC
scenario is not shown, because for up to 200 obs./edge and
varying θ it throughout performed with an average of f1 =
0.0. Apparently, MinCTC could not cope with cases where
m&h pairs differ only slightly from other types of pairs.

To summarize, when using MinCTC, the algorithm’s ac-
curacy was poor in the UC case for small numbers of obser-
vations or suboptimal choices of the amplification parame-
ter. In the CC case, no colluders could be detected. How-
ever, the performance of MinCTC could possibly be im-
proved by a better choice of the clustering parameter (which
seems to be very tricky).

417

0

10

20

30

40

50

60

70

80

90

200 400 600 800 1000

se
co
nd
s

number of workers

MinCTC
MCL

Figure 6. Running times of MCL and MinCTC

6.2 Complexity and Running Time

Lines 2 to 3 of Alg. 1 comprise computations for each
pair of workers, and thus lie in O(|N |2), where N is the
population of workers. Line 4 depends on the concrete im-
plementation of the used graph clustering algorithm. MCL’s
complexity is essentially dominated by matrix multiplica-
tion [2] and is in O(|N |3), but can implementation wise be
brought to worst case O(|N |k2) [23], where k is a prun-
ing constant smaller than |N |. MinCTC relies on maximum
flow algorithms which are also polynomial in complexity
[7]. Lines 5 to 7 of Alg. 1 can be computed in O(|N |).

We experimentally compared the running times of MCL
and MinCTC for different sizes of N . For the tests, both al-
gorithms took their inputs from a file but did not write any
output. The input mainly consists of the sample correlation
for each pair of workers, and so the file size f grows nearly
quadratic with the number of vertices in a graph. However,
the two algorithms worked on files with the same size and
thus the difference in their running time was left unaffected.
Figure 6 shows the running times of MCL and MinCTC in
seconds for the same setting (UC, 10 obs./edge); experi-
ments were run on a 2.33 GHz Linux machine with an Intel
Xeon CPU and 3GB RAM. Although MCL was shown in
[2] to be very slow, it still clearly outperforms MinCTC and
its complexity seems to grow considerably slower.

7 Related Work

Silaghi et al. [18] proposed an algorithm for detecting
collusion. They consider three different types of malicious
workers: first, naive workers that randomly return incor-
rect results with a certain probability; secondly, workers that
only return incorrect results if they know that they hold the
majority in a vote; and third, a mixture of the first two types.
Their core mechanism counts for each worker the number
of votes it got against in past votes. Then, as the probability
of getting votes against is different for naive workers, this
type and partly the third type can be identified and removed
from the votes. In order to spot the second type of collud-

ing workers, they again apply the redundancy principle to
test workers in the remaining “conflicting” votes. At this
point, we face again the problem of collusion. Opposed to
that, our collusion detection mechanism fully does without
making use of redundancy checks.

Sarmenta [17] proposed to combine redundancy with
spot-checking. In spot-checking, workers are regularly as-
signed work units for which the correct result is already
known. Workers that get caught returning incorrect results
are blacklisted and their results are ignored (if identities can
be checked). In their model, attackers are described by a
Bernoulli process and return correct and incorrect results
with a specific probability. Assuming this attacker model,
the author attains probabilistically guaranteed levels of cor-
rectness. However, their model does not consider attackers
that follow more sophisticated strategies such as collusion.

Zhao et al. [26] proposed the scheme “Quiz” for result
verification in peer-to-peer grids. In this scheme, a worker
delegates a whole package of work units to a single worker.
In such a package, quizzes are interspersed for which the
correct result has been precomputed (as in spot-checking).
If one of the quizzes is answered incorrectly, the whole
package is discarded, the trustworthiness of the respective
worker is reduced and it is possibly blacklisted. Under
collusion, Quiz outperforms redundancy; in the absence of
collusion however, Quiz performs worse. This argues for
a combination of redundancy with collusion detection, in
cases where collusion cannot be precluded.

Roch and Varrette [16] proposed a spot-checking mecha-
nism for dependent tasks in the scenario of divide&conquer
computations. Independently of the attacker model, they
reach a user-defined error probability bound for detecting
massive attacks, where the bound depends on the minimum
ratio of malicious workers in the population. Again, correct
results for the spot-checks are assumed to be recomputed
reliably. Du et al. [5] proposed an effective spot-checking
mechanism for scenarios where many computations have
to be performed but only few of the results have to be re-
turned. In their approach, a worker constructs a Merkle-tree
that combines the hashes of all results belonging to a spe-
cific task. The worker commits the root of the tree to the
master, who can afterwards spot-check single results.

Game-theory and mechanism design were proposed to
prevent malicious behavior of workers by making it unprof-
itable for them to act maliciously (e.g., [10, 25]). These
approaches assume that workers want to maximize some
(financial) profit and act rational on this score. How-
ever, in systems where workers participate voluntarily (e.g.,
[8, 1, 3]), “rational behavior” is if any hard to define. But
also in commercial settings, workers may be maliciously
destructive or act with an unknown rationality behind. For
these cases, game-theoretic analysis and mechanism design
are inadequate.

418

8 Conclusion & Future Work

We presented an easy-to-implement collusion detection
algorithm for grid computing that identifies colluding work-
ers on the basis of correlated outcomes in votings. It was
shown for different collusion strategies that correlation is a
good feature for distinguishing honest workers from mali-
cious ones. We found that the more malicious workers col-
lude, the more they become identifiable. In an experimen-
tal study, we evaluated our algorithm and showed that ac-
curacy strongly depends on the number of observed voting
outcomes and the used graph clustering algorithm. The lat-
ter also dominates the runtime complexity. Using the MCL
cluster algorithm, our algorithm performs well for the UC
case. However, a large number of observed votes is needed
for getting reasonable results in the CC case, which can be
precluded though by varying the level of redundancy.

To improve accuracy and runtime, one could try to re-
place the graph clustering component, which is used for
analyzing the structure of correlation among workers, for
instance by pattern recognition methods. Concerning the
integration of our algorithm into existing grid architectures,
parallelization would be an interesting issue in order to run
it in a distributed fashion with the help of trusted workers.

References

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: an experiment in public-
resource computing. Commun. ACM, 45(11):56–61, 2002.

[2] U. Brandes, M. Gaertler, and D. Wagner. Experiments on
graph clustering algorithms. In Proc. of the 11th Annual Eu-
ropean Symposium on Algorithms, volume 2832 of LNCS,
pages 568–579. Springer, 2003.

[3] distributed.net projects, February 2009. http://www.
distributed.net/.

[4] J. R. Douceur. The sybil attack. In Revised Papers from
the 1st Int. Workshop on Peer-to-Peer Systems (IPTPS ’01),
pages 251–260. Springer Verlag, 2002.

[5] W. Du, J. Jia, M. Mangal, and M. Murugesan. Uncheat-
able grid computing. In Proc. of the 24th Int. Conf. on Dis-
tributed Computing Systems (ICDCS’04), pages 4–11. IEEE
Computer Society, 2004.

[6] M. Evans, N. Hastings, and B. Peacock. Statistical Distribu-
tions. John Wiley & Sons, Inc., New York, NY, USA, third
edition, 2000.

[7] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph
clustering and minimum cut trees. Internet Mathematics,
1(4), 2004.

[8] Folding@home distributed computing, February 2009.
http://folding.stanford.edu/.

[9] A. V. Goldberg and K. Tsioutsiouliklis. Cut tree algorithms:
An experimental study. Journal of Algorithms, 38(1):51–83,
2001.

[10] P. Golle and S. G. Stubblebine. Secure distributed comput-
ing in a commercial environment. In Proc. of the 5th Int.
Conf. on Financial Cryptography (FC ’01), pages 289–304.
Springer Verlag, 2002.

[11] D. Kondo, F. Araujo, P. Malecot, P. Domingues, L. M. Silva,
G. Fedak, and F. Cappello. Characterizing result errors in
internet desktop grids. In Proc. of the 13th European Conf.
on Parallel Processing (EURO-PAR ’07), volume 4641 of
LNCS, pages 361–371. Springer Verlag, 2007.

[12] D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, and
A. A. Chien. Characterizing and evaluating desktop grids:
An empirical study. In Proc. of the Int. Parallel and Dis-
tributed Processing Symposium (IPDPS’04), pages 26–35.
IEEE Computer Society, 2004.

[13] D. Molnar. On patrol: The SETI@home problem. ACM
Crossroads: E-commerce, 7(1), September 2000.

[14] D. S. Moore. The Basic Practice of Statistics. W. H. Free-
man & Co., New York, NY, USA, fourth edition, 2007.

[15] C. J. V. Rijsbergen. Information Retrieval. Butterworth-
Heinemann, Newton, MA, USA, 1979.

[16] J.-L. Roch and S. Varrette. Probabilistic certification of di-
vide & conquer algorithms on global computing platforms:
application to fault-tolerant exact matrix-vector product. In
Proc. of the Int. Wksh. on Parallel Symbolic Computation
(PASCO ’07), pages 88–92. ACM, 2007.

[17] L. F. G. Sarmenta. Sabotage-tolerance mechanisms for vol-
unteer computing systems. In Proc. of the 1st Int. Sym-
posium on Cluster Computing and the Grid (CCGrid ’01),
pages 337–346. IEEE Computer Society, 2001.

[18] G. C. Silaghi, F. Araujo, L. M. Silva, P. Domingues, and
A. Arenas. Defeating colluding nodes in desktop grids com-
puting platforms. In Proc. of the 2nd Workshop on Desktop
Grids and Volunteer Computing (PCGrid ’08). IEEE Com-
puter Society, 2008.

[19] E. Staab, V. Fusenig, and T. Engel. Using correlation
for collusion detection in grid settings. Technical Report
000657499, University of Luxembourg, July 2008.

[20] W. Stallings. Cryptography and Network Security: Princi-
ples and Practice. Pearson Education, Upper Saddle River,
New Jersey, USA, third edition, 2003.

[21] M. Taufer, D. Anderson, P. Cicotti, and C. L. B. III. Ho-
mogeneous redundancy: a technique to ensure integrity of
molecular simulation results using public computing. In
Proc. of the 19th IEEE Int. Parallel and Distributed Pro-
cessing Symposium (IPDPS ’05) - Workshop 1, page 119.1,
Washington, DC, USA, 2005. IEEE Computer Society.

[22] R. G. und T.C. Hu. Multi-terminal network flows. Journal
of SIAM, 9:551–570, 1961.

[23] S. van Dongen. Graph Clustering by Flow Simulation. PhD
thesis, University of Utrecht, 2000.

[24] H. Wasserman and M. Blum. Software reliability via run-
time result-checking. J. ACM, 44(6):826–849, 1997.

[25] M. Yurkewych, B. N. Levine, and A. L. Rosenberg. On the
cost-ineffectiveness of redundancy in commercial P2P com-
puting. In Proc. of the 12th Conf. on Computer and Commu-
nications Security (CCS ’05), pages 280–288. ACM, 2005.

[26] S. Zhao, V. Lo, and C. GauthierDickey. Result verification
and trust-based scheduling in peer-to-peer grids. In Proc.
of the 5th IEEE Int. Conf. on Peer-to-Peer Computing (P2P
’05), pages 31–38. IEEE Computer Society, 2005.

419

