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Abstract. We present a trust-based mechanism for the acquisition of
information from possibly unreliable sources. Our mechanism addresses
the case where the acquired information cannot be verified. The idea
is to intersperse questions (“challenges”) for which the correct answers
are known. By evaluating the answers to these challenges, probabilistic
conclusions about the correctness of the unverifiable information can be
drawn. Less challenges need to be used if an information provider has
shown to be trustworthy. This work focuses on three major issues of such
a mechanism. First, how to estimate the correctness of the unverifiable
information. Second, how to determine an optimal number of challenges.
And finally, how to establish trust and use it to reduce the number of
challenges. Our approach can resist collusion and shows great promise
for various application areas such as distributed computing or peer-to-peer
networks.
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1 Introduction

A lot of research addresses trust that is based on direct experiences [1,2]. These
direct experiences result from evaluating the outcomes of interactions with other
agents. Such an evaluation however is not possible when the outcome of an
interaction is information that cannot be verified, or the verification would be
too costly. An example illustrates this situation:

Example 1. Agent Alice wants to know the result of 15 + 8. However, Alice
cannot compute the result because she is out of resources at the time. So Alice
asks another agent Bob to do it for her. Although Bob knows how to calculate
the result, he returns the wrong result 26 because he is malicious and wants to
harm Alice. Consequently, Alice, who does not want to verify the result because
she wanted to save resources, uses the wrong result in her further work. This
will cause additional costs for her, and if she is not aware of them, she even does
not classify the experience with Bob as a negative experience.

An attempt to solve this problem is to ask several agents for the desired in-
formation, to compare their answers, and to discard these if they are not the
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same (see e.g. [3]). However, this approach is sensitive to collusion [2], especially
in settings with only few information providers, and its efficiency ought to be
improved. Therefore, we propose an alternative approach. The main idea is to
merge requests for information with so called “challenges” for which the correct
answers are already known. The requesting agent evaluates the responses to the
challenges and draws conclusions about the responses to the “real” requests.
This leads to an estimation of another agent’s trustworthiness which in turn can
be used to reduce the number of challenges that need to be used. However, a
minimal number of challenges is always retained to account for the first-time
offender problem [4].

The remainder of the paper is organized as follows. In Section 2, we outline
several application scenarios for the mechanism and show how challenges can
be generated in each scenario. The mechanism for information acquisition is
presented in Section 3. We discuss several issues concerning the practical use
of the mechanism in Section 4. Section 5 is used to refer to related work. We
conclude our paper and give an outlook on future work in Section 6.

2 Application Scenarios

This section outlines some application areas for which the mechanism shows
great promise.

The mechanism can be used in cases where calculations are outsourced and the
results shall not be verified. As it was motivated in Ex. 1, our mechanism can be
applied to the scenario of distributed computing, more specifically grid-computing
[5] or cloud-computing [6]. In these cases, challenges can either be provided by
trusted nodes or be computed whenever the system of the requesting agent is idle.

Another application scenario is the exchange of routing information in Wire-
less Ad Hoc Networks [7]. As new routing information cannot be verified, the
trust-based mechanism would help to enforce the provision of reliable informa-
tion. The challenges can be chosen to be questions about routes that are known
to exist (e.g. because packets have been sent over these routes in the recent past).

In peer-to-peer networks, our trust-based mechanism can be used against pol-
lution and poisoning attacks (see [8]). Challenges would consist of requests for
files that already have been verified by a human to match their description and
to be free of “bad chunks”. Note that in these settings, a small number of chal-
lenges for a given number of real requests would be essential for the practicability
of the mechanism. Also, the verification of a partly downloaded response to the
challenge should start as soon as a certain amount of packets is received.

The mechanism can also be useful for the purpose of exchanging reputation
information such that it implements the concept of “semantic distance” which
was introduced by Abdul-Rahman and Hailes [9]. The answers to challenges
would be used to determine the semantic distance, which in turn could be used
to weight the answers to the real requests. Related to that, the trust-based
mechanism can be used in Multi-Agent Systems, in which beliefs about the world
(which cannot easily be verified) are exchanged. The mechanism would prevent
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the acquisition and the spread of wrong or outdated beliefs as well as it would
filter out “incompatible” beliefs. In this case, challenges would be based on the
knowledge of an agent.

3 Trust-Based Mechanism for Information Acquisition

In the following, we describe one run of the mechanism. An agent wants to
get answers to m questions. We will call these questions “real requests”. In
our particular case, the agent will not be able to verify the correctness of the
answers which he will get to the real requests (because, as mentioned earlier, he is
incapable or does not want to spend resources on it). Therefore, before sending
the request, the agent adds n challenges for which the answers are known to
him. These challenges must be chosen in a way such that another agent is not
able to easily distinguish them from real requests; how this choice can be made
depends on the concrete setting (see Sect. 2 for examples). The agent merges
the m requests and the n challenges into a vector of size m + n, in an equally
distributed manner. This request-vector is then transferred to the information
provider which is expected to reply with a response-vector of the same size. After
reception, the response-vector is evaluated, i.e. the answers to the challenges are
verified. The resulting error rate is used for two things. First, to estimate the
error rate of the answers to the real requests (see Sect. 3.1) and second, as
input for a trust-update algorithm (see Sect. 3.2). It is shown how an optimal
number of challenges can be computed when an information provider is not
known (see Sect. 3.3) and how the established trust can be used to reduce this
number of (costly) challenges (see Sect. 3.4). Finally, a decision needs to be
made whether the obtained response-vector is accurate enough or a new request
to other information providers should be done. This decision-making process
however is not part of this work (see Sect. 4 for a discussion).

3.1 Evaluation of a Response

An agent A sends a request-vector with m + n questions to an information
provider who is expected to reply with a response-vector of the same size. Agent
A evaluates the answers to the n challenges in such a response-vector, and finds r
correct and s incorrect answers, with r+s = n. We will call the rate of incorrect
answers s

s+r the error rate. As the challenges and real requests in the request-
vector were equally distributed, r and s can be used to estimate a probability
distribution for the error rate in the remaining part of the response-vector (the
part with the real requests). In this work we will assume that the information
provider can be described by an error-probability pw: with probability pw he
answers independently each question incorrectly (see Sect. 4 for a discussion of
this assumption). Let {xi}n

i=1 denote the evaluated answers to the challenges,
so each xi is in {correct, incorrect}. We can use Bayes’ theorem to get the
probability of each error-probability pw:

P (pw|{xi}n
i=1) =

P ({xi}n
i=1|pw)P (pw)

P ({xi}n
i=1)

(1)
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We can simplify this formula in the following way. First, the denominator can be
calculated by marginalization over all rates that could have produced the given
observations. Second, no prior information on pw is given, so we have to assume
all pw to be equally probable, and so it can be left out (it’s probability density
function is 1 in [0, 1]). Third, from statistical independence between all single
answers it follows that P ({xi}n

i=1|pw) = ps
w(1 − pw)r. As a result, we get the

probability density function of the beta distribution with parameters α = s + 1
and β = r + 1:

f(pw; s + 1, r + 1) =
ps

w(1 − pw)r

∫ 1

0
xs(1 − x)rdx

(2)

Note that this probability distribution estimates the error probability pw of the
information provider and hence estimates also the error rate of the answers to
the real requests.

The mean of the beta distribution is given by α
α+β [10]. So, having costs cw for

one wrong answer, the expected costs for using the answers to the real requests
can be computed as follows:

E[m ∗ cw ∗ f(pw; s + 1, r + 1)] = m ∗ cw ∗ E(f(pw; s + 1, r + 1)) (3)

=
m ∗ cw ∗ (s + 1)

s + r + 2
. (4)

3.2 Bayesian Trust-Model

In this section, we present a formal trust-model which represents an agent’s
trust in another agent by a trust-value t and the corresponding uncertainty u.
These values will be used in Sect. 3.4 to reduce the number of challenges that
are needed for a request. We describe and justify how t and u are computed and
define initial values.

Let (tAB, uAB) denote the trust that an agent A has in an information pro-
viding agent B. In our model, a trust-value tAB ∈ (0, 1) is A’s estimation of the
rate of correct answers in a response-vector that will eventually be received from
B. The corresponding uncertainty uAB ∈ (0, 1] describes how certain A is about
this trustworthiness estimation tAB. Having no experience with B, an agent A
trusts always with (tAB, uAB) = (0.5, 1), i.e. the initially expected error proba-
bility is 0.5 but this is believed with the highest possible uncertainty. This seems
intuitive but also results from the formulas (which are defined below) when no
information is given.

Several forms of representation for trust have been proposed in literature (for
an overview see [11]). While uncertainty is usually represented as in our case,
there are several different representations of trust-values. To us, it seems to be
a mere issue of convention. However we want to justify our choice for (0, 1)
because, based on experiences, full trust (t = 1) or distrust (t = 0) seem not
to be reasonable – even though full trustworthiness and untrustworthiness are
possible.
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Trust-Values. Let rB
old and sB

old denote the amount of respectively correct and
incorrect answers from past response-vectors received from an agent B. More
precisely, to give recent experiences a higher importance than older ones, each
single experience in rB

old and sB
old has been weighted with a so called “aging

factor” λ (q.v. [11]). The trust-value tAB is defined to be the expected value
of a beta distributed random variable X with parameters α = sB

old + 1 and
β = rB

old + 1:

tAB
def
= E(X) =

rB
old + 1

rB
old + sB

old + 2
(5)

The probabilistic justification for this calculation follows directly from Section
3.1: the trust-value is the most probable error probability pw based on past ob-
servations. Formula (5) constitutes the core part of the trust-value computation
in the proposed mechanism. We want to emphasize the possibility to extend this
computation with other approaches for trust-value computation that have been
proposed numerously in literature (e.g. see [1,2]).

Uncertainty. The uncertainty uAB in our model is based on the variance σ2

of the beta distribution, i.e. the lower the expected variance, the lower the un-
certainty. We will show that for parameters α ≥ 1 and β ≥ 1, the variance of
the beta distribution has the two properties that Wang and Singh [12] claim for
certainty measures. However, in comparison to their approach and the one used
in TRAVOS [13] that both compute integrals over a beta distribution, the vari-
ance of the beta distribution is much easier to compute. For a beta distributed
random variable X with parameters α and β, the variance σ2 is given by ([10]):

σ2 =
αβ

(α + β)2(α + β + 1)
(6)

As parameters for σ2 we have again α = rB
old + 1 and β = sB

old + 1, so α, β ≥ 1
because rB

old, sB
old ≥ 0. The highest value the variance can take in this case is

1/12 at point α = β = 1 (which will follow directly from Theorems 1 and 2). We
normalize σ2 accordingly and get uAB:

uAB
def
= 12σ2 (7)

It remains to show that the variance has the properties demanded by Wang
and Singh [12] – or rather the inverse properties, because we are addressing
uncertainty (they addressed certainty). First, we show that for fixed conflict χ
between α and β, σ2 decreases. Conflict refers to the similarity of α and β: Many
positive and negative experiences give reason for a higher uncertainty about an
agents trustworthiness. Without loss of generality we assume α ≤ β such that
the conflict can be expressed as α

β . Second, we show that for increasing conflict
and increasing α, σ2 decreases to α+β

2 .

Theorem 1. For α ≤ β and fixed conflict χ := α
β , σ2 decreases for increasing

α + β.
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Proof. We have to show that for any χ > 0 the first derivative of σ2 is negative
for all possible α, β. In (6) we substitute β by (α/χ) and differentiate with
respect to α:

dσ2

dα
=

d

dα

(
α2/χ

(α/χ + α)2(α/χ + α + 1)

)

(8)

= · · · = − χ2

(1 + χ)(χ + α + χα)2
< 0, ∀β ≥ α ≥ 1. (9)

�
Theorem 2. Assuming fixed γ := α + β. For increasing conflict, σ2 increases.

Proof. We have to look at the “slices” of σ2 where γ := α + β is fixed. The
function at the respective “slice” should increase when the conflict increases and
decrease again when the conflict decreases. In σ2 we substitute β by (γ − α):

g(α) :=
α(γ − α)

γ2 ∗ (γ + 1))
(10)

The maximum of g(α) is to be shown to be at the point where the conflict is
maximal, i.e. α = β which is α = γ/2. If additionally g(α) is concave down, i.e.
the second derivation is negative for all possible α and γ, we’re done. We find:

d2g(α)
dα2

= · · · =
dg(α)
dα

(
γ − 2α

γ2 + γ3

)

= − 2
γ2 + γ3

(11)

For γ > 0 the first derivation has its only root (and so its maximum) clearly at
α = γ/2. The second derivation is negative for all γ > 0. �
Depending on the scenario, it might be necessary to control the speed with which
the uncertainty decreases; however this is done (e.g. taking the nth root of the
variance), it has to be guaranteed that the properties of the variance described
in Theorems 1 and 2 are still fulfilled.

3.3 Optimizing the Number of Challenges

In this section, we show how to find an optimal number of challenges n when given
a number of real requests m. With “optimal” we refer to a number of challenges
that minimizes the expected costs that arise when the error rate for the challenges
and the one for the real requests differs. For example, an agent gets many correct
answers to the verifiable challenges but not a single correct answer to the real re-
quests. Then, the agent would underestimate the error rate for the real requests
and work with incorrect information. Therefore, we find the number of challenges
for which the expected difference between errors to the challenges and errors to the
real requests is minimized. Note that a malicious information provider could try
to answer all challenges correctly while giving wrong answers to all real requests.
However, such situation could only be reached by guessing the number and the
positions of the challenges – because real requests and challenges are randomly
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merged. We proceed as follows. We first calculate the probabilities for all possi-
ble differences in the error rates. These probabilities are used to determine the
expected costs. The resulting cost-function is minimized in respect to n.

First, let us virtually separate challenges from real requests and denote the
vector that contains the answers to the challenges with �n and accordingly the
vector that contains the answers to the real requests with �m. Let �m be of size
m and �n be of size n. Further let w(�x) be a function returning the error rate in
some vector �x. What we want to know first is the probability of having an error
rate j in �m given an error rate i in �n:

P (w(�m) = j|w(�n) = i) (12)

The error rates w(�m) and w(�n) seem to be statistically independent. That is
however not the case because they both depend on the same error probability pw,
according to which the answers were answered incorrectly (see also Sect. 3.1).
Therefore, we have to consider P (�m, pw|�n) (for the moment ignore the function
w(·)). We use the basic product rule (see [14], p. 51) and get:

P (�m, pw|�n) = P (�m|pw, �n)P (pw|�n) (13)
= P (�m|pw)P (pw|�n) (14)

The last step leading to (14) is allowed because �m is independent of �n for given
pw. The probability P (w(�m) = j|pw) is the probability for k failures in m in-
dependent Bernoulli trials with error probability pw, where k = j ∗ m. So, we
have a binomial distribution with parameters m and pw; we will write Ppw (k|m).
The probability P (pw|w(�n) = i) follows the beta distribution f with parameters
α = i ∗ n + 1 and β = (1 − i) ∗ n + 1 (as derived in Section 3.1). In order to get
(12) we can integrate over all mutually exclusive pw:

P (w(�m) = j|w(�n) = i) =
∫ 1

0

Ppw (j ∗ m|m) (15)

∗ f(pw; i ∗ n + 1, (1 − i) ∗ n + 1)dpw (16)

Now, we can calculate the probability that the error rate in �m differs from the
error rate in �n by some x. This is done by marginalization over all τ ∈ T , where
T is the set that contains all possible error rates in �n, i.e. T = { a

n |a ∈ N0, a ≤ n}:
P (w(�m) − w(�n) = x) =

∑

τ∈T

P (w(�m) = τ + x, w(�n) = τ) (17)

=
∑

τ∈T

P (w(�m) = τ + x|w(�n) = τ)P (w(�n) = τ) (18)

Note that a priori all �n are equiprobable and so we can compute P (w(�n)) in
a combinatorial fashion; i.e. for w(�n) = a/n, we have to divide the number
of possibilities to have a incorrect answers in �n, by the number of all possible
vectors �n:

P (w(�n) = a/n) =

(
n
a

)

2n
(19)
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Formula (18) will be calculated for all those differences x that are “possible”,
i.e. those contained in the set X := { a

m − b
n |a, b ∈ N0, a ≤ m, b ≤ n}. Note that

X contains both positive and negative x. For positive x, we have a higher error
rate in �m, for negative x we have a higher error rate in �n.

We are now ready to define a cost-function that calculates the expected costs
for a specific number of challenges n. Let the following parameters be given:

m – number of real requests,
cc – costs for generating one challenge + costs for requesting the answer (the

information provider may get some payment) + costs for evaluating the
answer (which is a simple comparison to the already known answer),

cd – costs for a difference between w(�n) and w(�m) of 1. So, a high cd aims at a
high accuracy in the estimation of w(�m).

Then, for a chosen number of challenges n ≥ 1 the cost function is given by:

c(m, n, cc, cd) = n ∗ cc +
∑

x∈X

|x| ∗ cd ∗ P (w(�m) − w(�n) = x) (20)

This cost function (20) adds the costs for using n challenges, to the expected
costs when using n challenges for m requests. To find an optimal n, the func-
tion (20) needs to be minimized in respect to n. As an optimization of this cost
function at runtime would be a too costly computation, we propose to use pre-
computed values for various m, cc and cd. In (20) we can take cd out of the sum
and rewrite the cost function as

c(m, n, cc, cd) = n ∗ cc + cd ∗ d(m, n) , (21)

where d(m, n) stands for the remaining part in (20). This allows for computing
d(m, n) before actually running the mechanism and minimizing c(·) once cc and
cd are determined.

Figure 1 shows d(m, n) for specific m and n. Note that interestingly for fixed
m and increasing n, the function d(m, n) does not necessarily decrease. For
example for m = 7, the expected difference is smaller for n = 7 than for n = 8
and smaller for n = 14 than for n = 15. The reason is that for n = 7, each error
rate in �n has an exact matching error rate in �m; but for n = 8, most error rates
in �n differ from all error rates in �m what increases the expected difference of
error rates. Apparently, this fact has an impact on d(m, n) in all cases where n
is a multiple of m or where n divides m (e.g. see m = 10 and n = 5).

3.4 Weighting the Number of Challenges with Trust

Up to now, we estimated the optimal number of challenges for a given number
of real requests. For this calculation, we assumed that the information providing
agent has not yet shown to be trustworthy. Looking at the case in which an agent
would fully trust in an information provider, he would not need to use challenges
any more. This justifies the consideration that the more trustworthy the opponent
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Fig. 1. Expected differences d(m, n) between the error rates in �m and �n

has shown to be, the smaller the number of challenges can be. In the following, we
will integrate this notion of trust-based information acquisition into our model.

Basically, we want to weight the number of challenges that is optimal for the
general case with the trust A has in the actual information provider B. As in-
troduced in Section 3.2, A’s trust in B is represented by a tuple (tAB, uAB) ∈
(0, 1)×(0, 1] with tAB being the trust-value and uAB the attached uncertainty (for
simplicity we write t and u instead of tAB and uAB respectively). In this paper, we
exclusively used probability theory to compute trust, as this can be formally justi-
fied. At this point however it seems appropriate to make use of our intuition and try
to find the simplest formula that matches this intuition. The higher the trust-value
t is, the smaller the number of challenges should be; the higher the attached uncer-
tainty u is, the smaller the impact should be that the trust-value has on the number
of challenges. This is met by (1 − (1 − u)t), because for low trust-values or high
uncertainty we take the full number of challenges (limt↓0 1− t+ tu = 1 and we get
1 for u = 1), for low uncertainty the trust-value weights (limu↓0 1− t+ tu = 1− t)
and for high trust-values the uncertainty weights (limt↑1 1 − t + tu = u). So we
get a number of challenges n that is weighted with trust by:

n = (1 − t + tu) argmin
n′

c(m, n′, cc, cd) (22)

As desired, for initial trust (t, u) = (0.5, 1) (see Sect. 3.2), the number of chal-
lenges is not reduced.

To account for changes in an agent’s character or strategy and to prevent the
unawareness towards the first-time offender problem [4], the number of challenges
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should never become zero. For that purpose, we introduce a minimum number
of challenges minn > 0. Finally, an agent determines the number of challenges
he will use by max (n, minn).

4 Discussion

Several aspects for the use of the presented mechanism in practice have not yet
been addressed and shall be discussed in this section.

Collusion. For the choice of challenges, two important rules have to be respected
in order to avoid the possibility of collusion:

1. For requests that were not answered satisfactory and are therefore requested
again from other agents, the same challenges are to be used.

2. For requests for differing information, different challenges are to be used.

The reader can easily verify that otherwise colluding agents would be able to
identify real requests and challenges only by comparing the different request-
vectors and checking what has changed.

Distributing questions over time. Depending on the setting, it might be imprac-
tical to send requests together with challenges bundled in a vector. If an agent
wants to send only one question at a time, he can distribute challenges and
real requests over time. In this case, he has to be careful to give an attacker no
opportunity to deduce information from the points in time when questions are
sent about whether a question is a challenge or a real request (similar attacks
are called timing attack in cryptology).

Lack of resources. In specific cases where a lack of resources is the only reason
for not being able to verify a whole response, real requests can be declared to
be challenges after a response has been received. This has the advantage that
challenges cannot be disclosed (there are no challenges beforehand) and do not
cause additional costs. Then, an optimal number of challenges can be determined
during verification by using statistical considerations. Analogous problems can
be found in the area of Statistical Quality Control ([15]), where a fraction of the
output of a system is selected randomly and tested.

Delayed verification. Assume the case where the verification of information is
impossible because some knowledge is not given that would be needed for the
verification. To give an example, let agent A have requested the circumference c
of a circle given its diameter d (with c = π ∗ d). Let us also assume that A did
not know π at request-time and could not verify the response. When A obtains
π at a later point in time, he can verify the response by hindsight. The same
holds, if A did not verify the answer because he was too busy at the time but
gets round to verify the data at a later point in time. In our mechanism, such
delayed verifications can be easily integrated by just recalculating the trust in
the information provider and rechecking the need for further requests.
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Context-sensitivity. The context-sensitivity of trust is important in the field of
information acquisition. Agents may be competent in some domains (“what is
the prime factorization of 12345?”) and incompetent in others (“will it rain
today in Prague?”). In order to account for the assumption that an information
provider can be described by an error-probability pw (see Sect. 3.1), all questions
in one request vector must belong to the same domain. Still, different request-
vectors can belong to different domains. The approach by Rehák and Pechoucek
[4] seems suitable to account for the latter issue. Alternatively, techniques such
as Latent Semantic Indexing (LSI) [16], PLSI [17] or Concept Indexing [18] can
be used. These techniques would allow for defining the context-space on the basis
of acquired natural-language text.

Selection of information providers. How to decide whether a response-vector
is accurate enough was not part of this work. However, the general idea is
that an agent should discard acquired information and request it from other
agents if he can expect that the improvement will be worth the investment.
In case he decides to discard the information and request it again, he has to
choose an information provider from which to request. Solutions to this prob-
lem, known as the exploitation vs. exploration problem, can be found in literature
[19,20].

Efficiency. In the approach of redundant computation (see Sect. 1), the re-
questing agent needs to choose a positive integer ρ > 1 as redundancy level
(usually ρ = 2 or ρ = 3 [3]). Opposed to this, in our approach, the requesting
agent can adjust continuously the amount of resources used for verification. To
give an example, if the ratio of challenges n to real requests m is chosen to
be 2/4, then this would amount to a redundancy level of ρ = 0.5 if that was
possible.

However, the generation of challenges has also to be taken into account. As this
generation is domain dependent, we will analyze an approach that is generally
possible1: the results from redundant requests are used to fill a pool that contains
the answers for future challenges; as soon as the pool contains n answers, these
are used for a request-vector of size m+n with m real requests and n challenges.
A mechanism that only uses redundancy gives n results for ρ∗n requests, i.e. an
efficiency of 1

ρ . By additionally using challenges from the pool one gets overall
n + m results for (ρ ∗ n) + (m + n) requests, i.e. an efficiency of n+m

ρ∗n+m+n . To
illustrate the potential difference in efficiencies, we give the following example.
In the approach without challenges, for ρ = 3 one gets an efficiency of 1

3 ≈ 0.333.
In the “hybrid” approach with redundancy and challenges, using ρ = 3, one can
get an efficiency of 6

15 = 0.4 (for m = n = 3) or 8
14 ≈ 0.571 (for m = 6, n = 2).

The more an agent trusts a provider, the less challenges he can use and so the
higher the efficiency will be.

1 This approach would mainly improve the use of redundant requests in terms of
efficiency, but still would be partially sensitive to collusion.
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5 Related Work

Several trust and reputation models base their computations on a beta distribu-
tion [13,12,21,22]. However, they all assume that the assessing agent is able to
verify what we call the “real requests”. Our mechanism addresses the cases in
which this verification is undesirable or not possible. These cases are numerous
which was illustrated in Section 2.

Fullam et al. [23] propose a method for information acquisition from possibly
malicious or incompetent sources. Also, they show how to manage the trade-off
between costs for information acquisition, quality of the acquired information
and the coverage of an agent’s goals. In their model, the reliability of an in-
formation provider is assessed by checking whether some acquired information
fits the agent’s beliefs. In contrast to our mechanism, their approach does not
allow to handle acquired information that is not related to an agent’s beliefs
(e.g. mathematical calculations, music data, etc.).

Liau[24] models the relationship among belief, trust and information acquisi-
tion by use of modal logics. They formally study the role that trust can play
when uncertain information is assimilated in an agent’s beliefs.

In network security, a family of authentication protocols uses the principle of
challenge-response (e.g. [25,26]). Here, an entity proves its identity by answering
to a challenge posed by the opponent – this challenge can only be answered, if
the entity is in possession of a certain secret, and this secret is only given to
the entity with the identity in claim. However, our mechanism is not related to
this class of protocols: We do not use secrets and moreover, in our case it is not
about authentication.

6 Conclusion and Future Work

In this paper, a trust-based mechanism was presented which uses challenges to
estimate the correctness of acquired information that cannot be verified. We
showed how to choose an optimal number of challenges for a given number of
real requests and found that it is advantageous if the number of challenges is
a multiple of the number of real requests, or divides it. A way to reduce this
optimal number of challenges was proposed that makes use of trust. For these
purposes, a formal trust-model was introduced that computes trust-values and
uncertainty based on the beta distribution. It was proven that our uncertainty
measure preserves the properties demanded by Wang and Singh [12] but is easier
to compute.

Currently, we are working on a bootstrapping procedure for the mechanism.
Besides, we develop a procedure for deciding whether some acquired information
is accurate enough or should be requested again from other agents. Finally, the
mechanism is planned to be implemented and tested.
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discussions and Uwe Roth and Daniel Fischer for their constructive feedbacks.
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