
Runtime Monitoring and Dynamic Reconfiguration for
Intrusion Detection Systems

Martin Rehák1, Eugen Staab2, Volker Fusenig2, Michal Pěchouček1, Martin Grill3,1,
Jan Stiborek1, Karel Bartoš3,1, and Thomas Engel2

1 Department of Cybernetics, Czech Technical University in Prague
{rehak,pechoucek,grill,stiborek,bartos}@agents.felk.cvut.cz

2 Faculty of Science, Technology and Communication, University of Luxembourg
{eugen.staab,volker.fusenig}@uni.lu

3 CESNET, z. s. p. o., Prague, Czech Republic

Abstract. Our work proposes a generic architecture for runtime monitoring and
optimization of IDS based on the challenge insertion. The challenges, known in-
stances of malicious or legitimate behavior, are inserted into the network traffic
represented by NetFlow records, processed with the current traffic and the sys-
tem’s response to the challenges is used to determine its effectiveness and to
fine-tune its parameters. The insertion of challenges is based on the threat models
expressed as attack trees with attached risk/loss values. The use of threat model
allows the system to measure the expected undetected loss and to improve its
performance with respect to the relevant threats, as we have verified in the exper-
iments performed on live network traffic.

1 Introduction

One of the principal problems of the intrusion detection systems based on the anomaly
detection [1] principles is their error rate, both in terms of false negatives (undetected
attacks) and false positives, i.e. legitimate traffic labeled as malicious. This problem is
amplified by the fact that the sensitivity (and consequently the error rate) varies dy-
namically as a function of the background traffic. For example, an attack that would be
easily discovered in the lower nighttime traffic will pass undetected during the day, on
the system with identical settings. In this work, we address the problem of correct IDS
monitoring and dynamic reconfiguration, in order to provide the operators with:

– an estimate of system sensitivity/error rate, given the current network traffic and a
threat model, and

– autonomous system reconfiguration, based on the system monitoring and the threat
model.

In order to perform these tasks, we use the concept of challenges [2] (or fault injection)
from the field of autonomic computing, which allows us to measure the response of the
system with respect to a small subset of challenges, known instances of malicious or
legitimate behavior, inserted into the traffic observed on the network. The response of
the system and its individual components to the inserted challenges is used to determine

E. Kirda, S. Jha, and D. Balzarotti (Eds.): RAID 2009, LNCS 5758, pp. 61–80, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

62 M. Rehák et al.

Fig. 1. Adaptation process overview

its current error rate in terms of estimated ratio of false positives/false negatives (see
Fig. 1). It is also used to adapt the system behavior and to select and/or create optimal
system settings.

This generic concept is verified by its integration with the CAMNEP intrusion de-
tection system [3][4], which is based on a multi-stage combination of several network
behavior analysis algorithms processing the NetFlow [5] data. In Section 2, we briefly
discuss the relevant properties of the CAMNEP system, which was augmented with
the processes described in this paper. Then, we present the self-adaptive architecture
integrated with the underlying system and discuss the crucial elements of the architec-
ture (Section 3), such as dynamic classifier selection and optimization of number of
challenges and their composition. These sections describe the core contribution of this
work.

2 CAMNEP System

The self-optimization techniques presented in this paper were integrated with the CAM-
NEP network intrusion detection system [3], based on the Network Behavior Analysis
(NBA) approach [6]. This system processes NetFlow/IPFIX data provided by routers
or other network equipment and uses this information to identify malicious traffic by
means of collaborative, multi-algorithm anomaly detection. The system uses the multi-
algorithm and multi-stage approach to optimize the error rate, while not compromising
the performance of the system. The self-monitoring and self-adaptation techniques are
very relevant in this context, as they allow to improve the error rate with only a minimal
and controllable impact on its efficiency.

The NetFlow network traffic data is structured in records, and each record describes
one flow. A flow can be described as an unidirectional component of TCP connection
(or its UDP/ICMP equivalent) and contains all packets with the same source IP, desti-
nation IP, source and destination port and protocol (TCP/UDP/ICMP). A flow record
contains this basic information, as well as other information, such as the number of
packets/bytes transferred, duration and TCP flags encountered in the packets of the
flow. The flow records are aggregated over a predefined observation period (typically
1-5 minutes). When the observation period elapses, the data is read out for analysis, and
a new observation period begins.

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 63

The system contains two principal classes of classifying agents, which are able to
evaluate the received traffic:

Detection agents (agents A and B in Fig. 2) analyze raw network flows by their anomaly
detection algorithms, exchange the anomalies between them and use the aggregated
anomalies to build and update the long-term anomaly associated with the abstract traf-
fic classes built by each agent. These traffic classes describe various behaviors, as they
can be distinguished based on the features used by the anomaly detection methods in-
tegrated into the system. Each detection agent uses one of the five anomaly detection
methods listed herein. Each of the methods works with a different traffic model based on
a specific combination of aggregate traffic features, such as: (i) entropies of flow char-
acteristics for individual source IP addresses [7], (ii) deviation of flow entropies from
the PCA-based prediction model of individual sources [8], (iii) deviation of traffic vol-
umes from the PCA-based prediction for individual major sources [9], (iv) rapid surges
in the number of flows with given characteristics from the individual sources [10] and
(v) ratios between the number of destination addresses and port numbers for individual
sources [11].

All detection agents map the same flows, together with the shared evaluation of these
events, the aggregated immediate anomaly of these events determined by their anomaly
detection algorithms, into the traffic clusters built using different features/metrics, thus
building the aggregate anomaly hypothesis based on different premises. The aggregated
anomalies associated with the individual traffic classes are built and maintained using
the classic trust modeling techniques (not to be confused with the way trust is used
in this work). The detection agents evaluate the anomaly of each network flow on the
whole [0,1] interval, and the output of the detection agents is integrated by the aggrega-
tion agents.

Aggregation agents α1 from the set A = {α1, . . . , αg} represent the various aggrega-
tion operators used to build the joint conclusion regarding the normality/anomaly of the
flows from the individual opinions provided by the detection agents. Each agent uses a
distinct averaging operator (based on order-weighted averaging [12] or simple weighted
averaging) to perform the Rgdet → R transformation from the gdet-dimensional space
to a single real value, thus defining one composite system output that integrates the
results of several detection agents. The aggregation agents also dynamically determine
the threshold values used to transform the continuous aggregated anomaly value in the
[0, 1] interval into the crisp normal/anomalous assessment for each flow. The value of
the threshold is either relative (i.e. leftmost part of the distribution) or absolute, based
on the evaluation of the agent’s response to challenges.

The detection and aggregation agents annotate the individual flows ϕ with a contin-
uous anomaly/normality value in the [0, 1] interval, with the value 1 corresponding to
perfectly normal events and the value 0 to completely anomalous ones. This continuous
anomaly value describes an agent’s opinion regarding the anomaly of the event, and
the agents apply adaptive or predefined thresholds to split the [0, 1] interval into the
normal and anomalous classes. The threshold applied (and dynamically maintained) by
the aggregation agents divides the flows into two classes: normal and anomalous. The
anomalous flows are those whose anomaly falls below the threshold, while the normal

64 M. Rehák et al.

Fig. 2. Adaptation process in the CAMNEP system

flows are those, whose anomaly is above the threshold. This distinction allows us to
introduce the components of the error rate. False Positives (FP) are the legitimate flows
classified as anomalous, while the False Negatives (FN) are the malicious flows clas-
sified as normal. Most standalone NBA methods suffer from a very high rate of false
positives, which makes them unpractical for deployment. The static multi-stage pro-
cess of the original CAMNEP system already removes a large part of false positives,
while not increasing the rate of false negatives, and the goal of the self-optimization
techniques is to further improve the effectiveness of the system.

3 IDS Monitoring Architecture

The monitoring and adaptation components of the CAMNEP system implement the
high-level functional schema introduced in Fig. 1. The reconfiguration action (as shown
in Fig. 1) is the identification of the optimal anomaly aggregation function that achieves
the best separation between the legitimate and malicious challenges. Assuming that
these challenges are representative of the traffic in the network and the expected attacks,
such aggregation should also optimize the performance against the actual threats in the
current network traffic. The adaptation process also provides the user with the estimates
of system detection effectiveness against the threats defined in the threat model, as it
presents the effectiveness values for the currently selected aggregation function.

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 65

The background traffic is one of the adaptation process indirect inputs, as it influ-
ences the performance of the individual anomaly detection algorithms. As the network
traffic is highly unpredictable, it is very difficult to predict which aggregation function
will be chosen, especially given the fact that the challenges are selected from the DB
using a stochastic process with a pseudo-random generator unknown to a potential at-
tacker. The attacker therefore faces a dynamic IDS system that unpredictably switches
its detection profile between several different profiles with utility (i.e. detection per-
formance) values close to the optimum, and has to operate in a manner which would
evade any of these profiles. This unpredictability, together with the additional robust-
ness achieved by the use of multiple algorithms, makes the IDS evasion a much more
difficult task than simply avoiding a single intrusion detection method[13].

The self-adaptation process (detailed in Fig. 2) is based on the insertion of challenges
into the background of network flow data observed by the system. The challenges are
represented as sets of NetFlow records, corresponding to classified incidents observed
in the past. These records are generated by short lived, challenge specific challenge
agents and are mixed with the background traffic, so that they cannot be distinguished
from the background by the detection/aggregation agents. They are processed together
with the rest of the traffic, used to update the anomaly detection mechanism data and
trust models of individual detection agents and are evaluated with the rest of the traffic.
Once the processing is completed, the challenge flows are re-identified by their respec-
tive challenge agents, removed from the user output and the anomaly attributed to these
flows by individual aggregation agents is used to evaluate these agents and to select the
optimal output agent for the current network conditions.

There are two broad types of challenges. The malicious challenges correspond to
known attack types, while the legitimate challenges represent known instances of legit-
imate events that tend to be misclassified as anomalous. We further divide the malicious
challenges into broad classes (denoted AC1, . . . , ACk, . . .) characterized by the type
of the attack, such as fingerprinting/vertical scan, horizontal scan, password brute forc-
ing, etc. These classes are used to make the connection between the threat models in
Section 4.1 and the challenge selection. With respect to each of these attack classes,
we characterize each aggregation agent by a probability distribution, empirically esti-
mated from the continuous anomaly values attributed to the challenges from this class,
as we can see in Fig. 3. We also define a single additional distribution for all legitimate
challenges.

We assume that the anomaly values of both the legitimate and all types of malicious
challenges define normal distributions, with the parameters x̄k and σk

x for the k-th class
ACk of malicious challenges and ȳ and σy for the legitimate ones1. The distance be-
tween the estimated mean values of both distributions (x̄k and ȳ), normalized with
respect to the values σk

x and σy represents the quality of the aggregation agent with
respect to a given attack class. The effectiveness of the agent, defined as an ability to
distinguish between the legitimate events and the attacks is defined as a weighted aver-
age of the effectiveness with respect to individual classes and will be estimated by the

1 Normality of both distributions is not difficult to achieve, provided that the attack classes
are properly defined and that the challenge samples in these classes are well selected, i.e.
comparable in terms of size and other parameters.

66 M. Rehák et al.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
um

be
r o

f e
ve

nt
s

Anomaly/Normality

Anomaly distribution of traffic
Anomaly distribution of true positive challenges
Anomaly distribution of false positive challenges

Fig. 3. Distribution of challenges on the back-
ground of the anomalies attributed to the traffic
from one traffic observation interval. The distri-
bution of anomaly of the malicious challenges
(from one class) is on the left side of the graph,
while the legitimate events are on the right.

Goal

Attack A1 Subgoal

Subsubgoal

Attack A3 Attack A4

Attack A2

Fig. 4. Example Structure of an Attack Tree

trust modeling approach introduced in Sect. 5. In order to perform the above-described
self-adaptation process, we need to address three important issues:

– offline selection of appropriate challenges and estimation of their relative impor-
tance (Sections 4 and 4.3),

– dynamic selection of the optimal aggregation agent to be used as a system output
(Section 5), and

– dynamic determination of the optimal number of challenges.

4 Threat-Based Approach to Challenge Selection

In this section, we will present a method for challenge selection based on explicit threat
modeling. We define a set T = {T1, . . . , Tm} of relevant threats as identified by the
network administrator. Each threat is described by an attack tree, which specifies the
adversary’s attacks necessary to realize the threat. For each threat Ti, the system ad-
ministrator has specified the expected damage D(Ti), which would be caused should
the attacker realize the threat. Our system uses challenges to evaluate its internal com-
ponents in terms of accuracy and selects the most accurate component. Each challenge
tests for a specific class of attacks. Therefore, the detection of threats can be directed
by prioritizing those challenges that test for the most damaging threats.

In the following, we shortly review the concept of attack trees (Sect. 4.1) and show
how they can be formulated in propositional calculus (Sect. 4.2). The latter allows us
to minimize attack trees, and so bring them into an expedient form for further process-
ing. We use the minimized attack trees to determine the composition of challenges for
evaluating the internal components (Sect. 4.3).

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 67

4.1 Attack Trees

Attack trees depict how an attacker can attain a certain goal, e.g., to gain unauthorized
access to a system resource. This overall goal constitutes a threat to a security system
and builds the root of an attack tree.

The attack tree shows the alternative ways of how an attacker can reach the root,
and so realize the threat. As formalized in [14], an attack tree is composed of AND
and OR branches. Figure 4 shows a simple example of an attack tree structure. In this
figure, the branch with a connectional arc depicts an AND branch, all other branches
are OR branches. To reach the root, the attacker has to conduct a series of basic network
attacks, e.g., “horizontal scan”, which we call the atomic attacks. These atomic attacks
constitute the leafs of an attack tree. An attacker ”reaches” a leaf if he conducts the
corresponding attack. Then, either if all children of a node with an AND branch are
reached, then the node itself is reached. Similarly, an OR branched node is reached,
if at least one of its children is reached. This way, starting at the leafs by conducting
atomic attacks, an attacker can work its way up to the root. For our example in Fig. 4,
the attacker can for instance reach the root by performing the attacks A3 and A2.

The principal advantages of the attack tree formalism are its simplicity, relatively
high expressivity, and generality: an attack tree-level description of the threat is easily
transferable between the networks and can be thus reused.

4.2 Attack Trees in Propositional Logic

We can say, an attacker can reach the root node by reaching specific subsets of the leafs.
In this section we show how these specific subsets can be identified and minimized in
a neat manner. First, we represent an attack tree in propositional logic. A formula cor-
responding to a tree should become true iff the main goal in the attack tree is attained.
To build such a formula, we first create a literal for each atomic attack. Now, we suc-
cessively go through the tree (starting from the root node), and connect all children of
a node by the appropriate logic operation (OR for disjunctive branches, AND for con-
junctive branches). Parentheses are used to group the children together. For the example
tree shown in Fig. 4 this results in the formula:

(A1) ∨ ((A3 ∨ A4) ∧ (A2)) . (1)

A formula is in Disjunctive Normal Form (DNF) iff it is a disjunction of conjunctive
clauses. A formula is canonical, if all clauses contain all variables. We can bring any
formula into canonical DNF by building a truth table that contains all variables, and
taking all rows that evaluate to true as clauses. For our toy example in Fig. 4 that would
result in:

(A1 ∧ A2 ∧ A3 ∧ A4) (2)

∨(A1 ∧ A2 ∧ A3 ∧ ¬A4) (3)

∨(A1 ∧ A2 ∧ ¬A3 ∧ A4) (4)

∨ . . . (5)

68 M. Rehák et al.

Having an attack tree in canonical DNF, we can say, that an attacker realizes the threat
if he succeeds to make at least one clause true. However, there is still much redundancy
in the formula. For example, lines 2 and 3 together are logically equivalent to A1 ∧
A2 ∧ A3. To remove all redundancy from the formula, we simply apply the Quine-
McCluskey algorithm [15]. Note that when simplifying attack tree formulas, clauses
will only contain positive literals. For the attack tree in Fig. 4, we finally get:

(A1) ∨ (A3 ∧ A2) ∨ (A4 ∧ A2) . (6)

A formula in DNF can be written as a set of clauses {C1, C2, . . . } where each clause Ci

is a set of positive literals {li1, li2, . . . }. We will write F (T) for the minimal formula
in DNF that corresponds to attack tree T . The attack tree from Fig. 4 can be formalized
as:

F (T) = {{A1}, {A2, A3}, {A2, A4}} . (7)

4.3 Attack Tree Valuation

In this section, we first show how different attack classes can be prioritized, depending
on the expected damage of the successful attacks, i.e. the attack tree root being attained
by the adversary. We then show how the resulting priorities can be used to determine
the composition of challenges for adapting the IDS. Finally, we exemplify the procedure
with an example for a specific attack tree.

We assume, that a set of n detectable attacks A = {A1, . . . , An} and general net-
work conditions are known to the configured IDS. These attacks are classified into K
attack classes {AC1, . . . , ACK}, with

⋃
k ACk = A. We don’t require that all attacks

in an attack class are known, as the system is able to assess its effectiveness against
the attacks inserted into the traffic in real-time. However, we require a sufficient set of
attacks for each attack class, in order to use these samples as challenges.

The problem now is to prioritize the detection of attack classes. To this end, the
following criteria should be fulfilled:

Attack trees: An attacker has a certain goal (which determines the attack tree T). At-
tack trees that cause more damage should be prioritized.

Clauses: An attacker tries to make one clause true in a chosen formula F (T). Any
clause made true causes the same damage D(T). So each clause is assigned the
same priority.

Literals: For making a chosen clause true, an attacker needs to make true all literals
in this clause to cause damage D(T). Therefore, all literals belonging to the same
clause should be equally prioritized.

To fulfill the last two criteria, we compute the priority of an attack Ai within a tree Tj

as follows:

P (Ai, Tj) :=
1

|F (Tj)|
∑

Ck∈F (Tj),
with Ai∈Ck

1
|Ck|

. (8)

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 69

The reader can easily verify that if Ai is not in Tj , then its priority within the tree is
zero. Also, the sum of all priorities of the attacks in the tree is 1. To fulfill the first
criterion, we additionally weight each tree Tj according to the damage D(Tj) and get
the final priority for an attack Ai by summing over all attack trees:

P (Ai) :=
1

∑
Tj∈T D(Tj)

·
∑

Tk∈T
D(Tk) · P (Ai, Tk) . (9)

Because of the normalization, again the priorities of all attacks sum up to 1. Hence, we
can use these priorities to directly determine the ratio of challenges to test the respective
attacks.

Procedure. In order to calculate the priorities of the attacks in A, we propose the
following procedure:

1. For each tree Ti ∈ T do:
(a) Prune all impossible and non-detectable attacks from the tree.
(b) Build F (Ti): Transform the tree into a logical formula, bring it into DNF and

minimize it (as in Sect. 4.2).
2. Compute P (Ai) for each attack Ai as shown in formula (9).
3. For each attack class AC, add the priorities for all attacks in that class:

P (AC) =
∑

Ai∈AC

P (Ai) . (10)

The ratio P (AC) is a proportion of challenges from the class AC, and we will use
it to as a weight in Eq. 22.

Example. In this section we show how the priorities are computed for a set of two very
simple example attack trees T1 and T2 shown in Fig. 5 and 6 respectively. We estimate
the damages of the trees to be D(T1) = 900 and D(T2) = 100. The minimal formulas
in DNF for the two attack trees are:

F (T1) ={{A1, A2, A3}, {A1, A4, A5}} , (11)

F (T2) ={{A6}, {A7}, {A8}} . (12)

server takeover

A1 ·

·

A2 A3

·

A4 A5

attack description attack class
A1 horizontal scan AC1

A2 fingerprinting AC2

A3 buffer overflow AC3

A4 SSH brute force request AC4

A5 SSH brute force response AC4

Fig. 5. Example Attack Tree T1

70 M. Rehák et al.

file sharing

A6 A7 A8

attack description attack class
A6 download AC5

A7 upload AC5

A8 directory node AC5

Fig. 6. Example Attack Tree T2

We can now compute P (Ai, Tj) for all attacks. Clearly P (A1, T2) = 0, so let us look
at P (A1, T1):

P (A1, T1) =
1

|F (T1)|

(
1

|C1|
+

1
|C2|

)

=
1
2

(
1
3

+
1
3

)

=
1
3

. (13)

Analogously we obtain:

P (A2, T1) = P (A3, T1) = P (A4, T1) = P (A5, T1) =
1
2
∗ 1

3
=

1
6

. (14)

For attack tree T2 we get:

P (A6, T2) = P (A7, T2) = P (A8, T2) =
1
3

. (15)

Now, combining the two trees according to their expected damage, we obtain:

P (A1) =
D(T1)

D(T1) + D(T2)
· P (A1, T1) =

9
10

· 1
3

=
3
10

. (16)

In the same way, we obtain for the other attacks:

P (A2) = P (A3) = P (A4) = P (A5) =
3
20

, P (A6) = P (A7) = P (A8) =
1
30

.

(17)

Finally, we can compute the attack class priorities:

P (AC1) =
3
10

, P (AC2) = P (AC3) =
3
20

, P (AC4) =
3
10

, P (AC5) =
1
10

. (18)

5 Dynamic Aggregation Agent Selection

The insertion of challenges into the real traffic is not only a difficult problem from the
technical perspective (due to the high volume of events processed in near-real-time and
hard performance limitations of the system), but can also influence the effectiveness of
the aggregation agents based on anomaly detection approaches. As these agents are not
able to distinguish the challenges from the real events, the challenges are included in
their traffic model, making it less representative of the background traffic and therefore
reducing its predictive ability.

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 71

In this section, we present a trust-based algorithm which dynamically determines the
best aggregation agent and also the optimal number of challenges necessary for the re-
liable identification of the best aggregation agent, while taking into account the: (i) past
effectiveness of the individual aggregation agents and (ii) number of aggregation agents
and the perceived differences in their effectiveness. We decided to use a trust-based ap-
proach for evaluating the aggregation agents, because it not only eliminates the noise in
the background traffic and randomness of the challenge selection process, but accounts
for the fact that attackers might try to manipulate the system by inserting misleading
traffic flows. An attacker could insert fabricated flows [13] hoping they would cause
the system to select an aggregation agent that is less sensitive to the threat the attacker
actually intends to realize. When using trust, one tries to avoid this manipulation by
dynamically adapting to more recent actions of an attacker.

For each time step i ∈ N, the algorithm proceeds as follows:

1. Let each aggregation agent classify a set of challenges from different attack classes
and selected legitimate challenges.

2. Update the trust value of each aggregation agent, based on its performance on the
challenges in time step i.

3. Accept the output of the aggregation agent with the highest trust value as classifi-
cation of the remaining events of time step i.

As we have stated above, we challenge detection and aggregation agents in each time
step i with the sets of flows for which we already know the actual class, i.e. whether
they are malicious or legitimate. So, we challenge an aggregation agent α with a set of
malicious events, belonging to K attack classes and a set of legitimate events drawn
from a single class. With respect to each class of attacks k, the performance of the
agent is described by a mean and a standard deviation: (x̄k, σk

x) for the set of malicious
challenges and (ȳ, σy) for the set of legitimate challenges. Both means lie in the interval
[0, 1], and x̄k close to 0 and ȳ close to 1 signify accurate classifications of the agent
respectively (see Fig. 7). Based on this performance in time step i, we define the trust

Fig. 7. Performance measures used for computing one trust experience

72 M. Rehák et al.

experience ti,kα with that aggregation agent α as follows:

ti,kα =
ȳ − x̄k

σy + σk
x

. (19)

The intention behind this formula is that an agent is more trustworthy, if its classifi-
cations are more accurate (x̄k is low and ȳ is high), and more precise (the standard
deviations are low). Note that ti,kα lies in (−∞,∞); however ti,kα will rarely be negative
in practice.

To get the attack-class specific trust value T k
α for an agent α, we aggregate the past

trust experiences with that agent regarding the challenges from class k:

T k
α =

∑

i

wi ∗ ti,kα , (20)

where wi are weights that allow recent experiences a higher impact. This is done be-
cause older experiences are expected to be less significant than more recent ones. In
our current system, the weights decrease exponentially. The system receives the input
events in 5 minute batches, and assigns the same weight to all events in each batch. The
weight of the challenges from the batch i is determined as:

wi =
1
W

e(j−i) ln(0.1)
4 , (21)

where the j denotes the current time step, and the value of the coefficient ln(0.1)
4 was

selected so that challenges from the fifth batch (the oldest one being used) are assigned
a weight of 0.1 before the normalization. The normalization is performed simply by di-
viding all weights by the sum of their un-normalized values W to ensure that

∑
wi = 1.

We are currently using the challenges from the last 5 batches, meaning that the (j − i)
part of the exponent takes the values between 0 and 4. Please note that the specific as-
signment of weights wi is highly domain specific, and is only included as an illustration
of the general principle.

The final trust value T i
α for the aggregation agent α is determined as a linear combi-

nation of the partial, attack class-specific values T k
α :

T i
α =

K∑

k=1

P (ACk) · T k
α , (22)

where the weights P (ACk) attributed to the trustworthiness of the individual classes
are derived from Eq. 10.

5.1 Optimizing Number of Challenges

The number of challenges used as basis for the computation of the trust experiences ti,kα

should be as small as possible while at the same time providing accurate results for the
trust experiences. This means that we want to know the minimum number of challenges
n for computing x̄k and ȳ which gives certain guarantees about the estimation of the
actual means μxk and μy (estimated by x̄k and ȳ respectively).

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 73

Guaranteeing margin of error m. At the outset, let us make two reasonable assump-
tions. First, we assume that the samples are normally distributed. This is the common
assumption if nothing is known about the actual underlying probability distribution.
Second, as suggested in [16], we assume the sample standard deviations which we
found in past observations to be the actual standard deviations σk

x and σy . Then, the fol-
lowing formula gives us the number of challenges n that guarantees a specified margin
of error m when estimating μxk (or μy analogously) [16]:

n =
(

z∗σk
x

m

)2

, (23)

where the critical value z∗ is a constant that determines how confident we can be. Com-
mon critical values z∗ are 1.645 for 90%, 1.960 for 95% and 2.576 for 99%. More
specifically, the integral of the standard normal distribution in the range [−z∗, z∗] equals
the respective confidence level. If z∗ is for instance chosen for a confidence level of
99%, we know that if we use n challenges for computing x̄k, the actual mean μxk will
lie in the interval x̄k ± m with the probability of 0.99.

Choosing margin of error m. The margin of error m is chosen such that we can be
confident that the order of the first two most trustworthy agents is confirmed. In turn,
this confirms that the selection of the first agent is the best choice. Let us call the first
and the second agent α1 and α2 respectively, so we have Tα1 ≥ Tα2 . We want to make
sure that for the next trust experience this order is not reversed by chance. Recall that a
trust experience tα is defined as the difference between ȳ and x̄k weighted by the sum
of the corresponding standard deviations (see formula (22)). As we use 2 ∗n challenges
to find ȳ and x̄k respectively, the overall margin of error for the difference of ȳ and x̄k

will not be higher than 2 ∗ m. The largest margin of error m′ for which tα1 ≥ tα2 is
still true (with the given confidence), must therefore fulfill the equation where tα1 takes
the lowest and tα2 the highest possible value.

tα1 ≥ ȳ1 − x̄k
1 − 2m′

σy1 + σx1
k

︸ ︷︷ ︸
=:a

=
ȳ2 − x̄k

2 + 2m′

σy2 + σx2
k

︸ ︷︷ ︸
=:b

≥ tα2 , (24)

where the inner equation can be solved to give:

m′ =
(tα1 − tα2)ab

2(a + b)
=

b(ȳ1 − x̄k
1) − a(ȳ2 − x̄k

2)
2(a + b)

. (25)

So, a choice of m with the constraint m ≤ m′, guarantees with the specified confidence
that we will get tα1 ≥ tα2 — in the case that this is the true order. To limit the number
of challenges, we choose the maximal margin of error m that fulfills this constraint,
which is given by m := m′. We also impose an additional lower bound on m, in order
to prevent the number of challenges to grow disproportionally when the differences
between the agent’s trustworthiness with respect to this specific attack class ACk are
insignificant.

74 M. Rehák et al.

6 Experimental Evaluation

In the experimental part of our work, we evaluate two aspects of the mechanism: its
ability to effectively reduce the number of false positives, while relying on an acceptable
number of challenges, and its ability to selectively identify the events relevant to the
priority threats as specified by the system administrator.

All the experiments were conducted on a university network, on the background
of the regular network traffic. This background traffic contains roughly 10% of mali-
cious flows, principally related to scanning, peer-to-peer activity, botnet propagation
and brute force attacks on passwords, in no particular order.

In the first series of experiments, we test the ability of the suggested mechanism to
produce the classifications with a reasonable error rate as expressed in terms of false
positives and false negatives. To evaluate the error rate, we have manually classified the
traffic from a significant subset of active hosts on the network. This classified traffic
is then used to gauge the effectiveness of the method. The system observed about 80
000 flows every 5 minutes, with roughly 20 000 flows being malicious, and that the
evaluation was performed over about seventy 5-minute long observation intervals. The
system contained 30 aggregation agents, each of them averaging the opinions of the 5
underlying detection agents as described in Section 2.

In Fig. 8, we can see the number of challenges as it evolves over time. At the begin-
ning, the system works with a fixed number of challenges, in order to let the anomaly
detection methods in the detection agents adapt to the traffic. Once all the detection
agents start (at step 5, after 25 minutes), the system starts to progressively insert more
challenges, in order to build an initial assessment of all classifier agents. The number
of challenges peaks at around the step 14, when it reaches 100 (all challenges com-
bined). Once a user agent has built the initial trustworthiness for all agents, the num-
ber of challenges decreases until it levels out at around 40 (legitimate and malicious

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Time

N
um

 o
f c

ha
lle

ng
es

Num of malicious challenges
Num of legitimate challenges

Fig. 8. Number of challenges over time, both le-
gitimate (top, green curve) and malicious (bot-
tom, red curve)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Fa
ls

e
po

si
tiv

e
(#

S
cr

IP
s)

Time

Fig. 9. Number of false positives (unique
sources). Each aggregation agent is represented
by one thin curve, the solid curve shows the per-
formance of the aggregation agent dynamically
selected by the system.

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 75

Table 1. Results of static system with arithmetic average (top line) compared to the selection of a
single aggregation agent (middle part) and the dynamic self-adaptation mechanism described in
this paper. Values are averaged to obtain the expected error numbers for one observation period.

Result False Negat. [# sources] False Posit. [# sources]

Arithmetic average 14.7 12.5

Average for aggregation fct. 13.1 24.3
Min FP for aggregation fct. 14.5 5.3
Min FN for aggregation fct. 9.8 125.2
Best aggregation fct. 13.7 5.7

Adaptive aggregation selection 14.0 3.1

challenges combined), where it fluctuates until the end of experiment. However, there
are two notable increases to explain: between steps 30 and 40, and after step 60.

These increases can be easily explained when looking at Fig. 9, which shows the
number of false positives in terms of unique source IP addresses. During these time
intervals, we can notice that the choice of an appropriate aggregation agent has a huge
impact on the quality of results, and that the adapted system is able to minimize the
number of false positives. The number of challenges is lower between steps 40 and
60, when all agents provide similar results, and increases again around 60, where the
performance of the aggregation agents varies somewhat more. On the other hand, we
can see that the user agent did not manage to avoid a spike in false positives around the
step 20, when it did not yet have a representative trust model.

The results shown in Fig. 9 are summarized in Table 1. We can see that the challenge-
based, dynamic adaptation mechanism clearly outperforms the simple arithmetic aver-
age aggregation, which is the optimal selection when we have no information regarding
the detection agent’s performance. It also outperforms any single aggregation function
selected using the a-posteriori knowledge from the pool of all 30 functions. All the
methods have a comparable rate of false negatives, but differ in the rate of false posi-
tives, where the dynamic selection clearly outperforms the best aggregation functions.
The relatively important margin of separation between the dynamic selection and best
false positives of any single aggregation is given by the fact that the dynamic selection
can avoid relatively high number of false positives during the periods when the indi-
vidual aggregation functions differ in performance, such as around the sets 30-40. This
further underlines the importance of the adaptive rate of challenge insertion, which
allows fast identification of the optimal system output during the changes of system
characteristics.

In Fig. 10, we can see the dynamics of the aggregation operator/agent selection over
time. With an exception of the initial 6 intervals, when the operator #0 (arithmetic av-
erage) is selected by default, the system dynamically selects between the remaining
operators, with about half of the selections being the operators #23 and #24. Both
these operators include OWA as well as anomaly-detection-method-based weight av-
erage portion. They are identical in the fixed part, where they attribute the weight 0.33
to each of the agents Xu [7], MINDS [10] and TAPS [11]. The operators differ in the
OWA part, where the first one builds its opinion from the three lowest anomaly values,

76 M. Rehák et al.

0 10 20 30 40 50 60 70
8

10

12

14

16

18

20

22

24

26

28

S
el

ec
te

d
cl

as
si

fie
r a

ge
nt

 ID

Time

Fig. 10. Selected aggregation agent (identified by the ID number on axis y) for each time step

while the second considers the third and fourth anomaly values. The weights of the
detection-method-based averaging and order weighted averaging parts are 0.5 for both
operators. It is interesting to note that the system managed to pick the three methods
with the most diverse set of anomaly detection features (in the fixed part), consistently
with basic ensemble classification [17] principles. The quality of this result is there-
fore based not only on the absolute quality of underlying detection methods, but also
benefits from the diversity of the anomaly detection methods.

In the above-described experiments, the challenges were inserted uniformly, regard-
less of the attack type. In the following, we will try to measure the effects of challenge
insertion in terms of system sensitivity with respect to specific attacks. To do so, we
have used the simple server compromise attack tree specified in Fig. 5 to generate the
challenges optimizing the system, and we have then attempted to compromise one of the
hosts on our network using the standard security tools, such as nmap or metasploit.
The attacks were repeated several times, with changes in speed, tools settings and in-
tensity. We have observed that the system selected the aggregation functions that were
able to maximize the likelihood of detection of various stages involved in the server
exploit attacks. The anomaly values attributed to horizontal sans, fingerprinting and
vertical scans have increased considerably, making them far more likely to be detected.
The most dramatic change of behavior was related to the password brute force breaking
attempts. These were undetectable with the baseline system configuration, but became
detectable with the case-specific system configuration. Buffer overflow attacks were un-
detectable regardless of the aggregation function, as they are nearly impossible to detect
with NBA methods due to the low volumes of traffic involved.

In Table 2, we present the effects of threat model-based adaptation in the traffic used
in the first series of experiments. This data set does not match the model at all and
provides a good worst case example. We can see that the number of alerts (typically

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 77

Table 2. Effects of scenario specific selection on alert numbers in unrelated traffic. Obtained over
72 observation intervals 5 minutes long.

Result [# alerts] False Negatives False Positives True Positives

Neutral challenge insertion 39 201 146
Case-specific insertion 37 249 161

greater than the number of malicious sources used in Table 1) generated by the system
has grown, and that the number of false positives increased by about 50. The number of
alerts classified as true positives have increased as well (by 15), and the number of false
negatives decreased by 2. Note that the total number of alerts is not necessarily identi-
cal due to the possible alert fragmentation. Overall, we can see that in order to detect
the attacks crucial in the server compromise scenario (e.g. password bruteforcing), the
system was able to increase its sensitivity and to find a new equilibrium with different
detection profile. It shall be also noted that most of the false positives are repetitive
occurrences of traffic structures that are difficult to predict, and that about 80% of them
can be eliminated with less than 20 rules in the alert processing engine.

7 Related Work

In literature, more sophisticated formalisms than attack trees have been proposed for
modeling attack structures, e.g., attack graphs [18] and attack grammars [19]. However,
for our purposes, we do not need to account for the order in which plans of attacks
are carried out or the relations between attacks, and hence, the attack tree formalism is
sufficiently rich.

In desktop grid computing, spot-checking [20,21] is used to make sure that hosts to
which a computation has been outsourced, return correct results. To this end, indistin-
guishable challenges for which the correct answer is already known are interspersed
with actual requests. For a spot-checking approach, where challenges are merged into
a vector among a set of real requests, Staab et al. [2] showed how to determine an op-
timal number of challenges for a given number of real requests. They focused on the
case where the answer to a challenge or a real request is binary. This was extended in
our work, where we handle the continuous case.

The use of ensemble classification approaches [22] is functionally equivalent to our
approach, but with extremely strong assumptions. It requires a pre-classified training
data set and don’t dynamically adapt system to the changing conditions.

Ghanbari and Amza [23] train belief networks that represent complex systems by
injecting failures. At the outset, experts model a belief network that describes the de-
pendencies within a system. The inserted failures then change the prior beliefs of the
experts to form better estimates. Through fault injection, the dependencies between the
variables in the belief network become evident, and so the overall system can be trained.
Opposed to that, we inject challenges to evaluate classification components in terms of
accuracy in order to select the most accurate one.

78 M. Rehák et al.

8 Conclusion

Our work presented in this paper aims to close the gap between security policies and
formal threat models and the practice of IDS deployment. To achieve this objective, we
have designed a runtime adaptation and monitoring framework running on the top of
the IDS. It evaluates the performance with respect to the threat models, that are defined
as attack trees, with a value assigned to the achievement the objective (root) of the each
tree. Objective value can be defined in two manners. In a decision theoretical paradigm,
we will aim to minimize our loss by associating an estimate of our loss (or risk) with the
achievement of each attack tree root. In the game theoretic model, the value of the attack
tree would reflect its value for the attacker. This second option allows us to differentiate
between different types of attackers, with different technical capabilities represented by
trees with growing complexity and corresponding risk values.

Either type of the threat/risk model can be used as an input for the online monitor-
ing and adaptation process, which is able to evaluate the probability that an attack as
defined by the attack tree would pass undetected. This results in an estimate of the ex-
pected undetected loss, given the current traffic status. This value is also a basis for
system adaptation, as the system dynamically reconfigures itself in order to minimize
the undetected loss value. The adaptation is based on the evaluation of system response
with respect to a set of challenges, pre-classified recorded samples of the past traffic
modified to fit the current traffic. The adaptation components of the system use the
threat model to define the optimal mix of challenges to insert, in order to align the sys-
tem performance with the threat models. It is also able to dynamically adjust the number
of challenges to insert in response to changing traffic characteristics. The experiments
performed with the system show that the dynamic selection of the optimal aggregation
function in the CAMNEP system can significantly reduce the number of false positives
and that the targeted insertion of challenges selected according to threat models can
influence the system sensitivity to reflect the risks associated with each attack type.

The principal limitations of the work are related to the detection capabilities of the
individual detection agents aggregated in the system. Using the assumption of classifier
diversity [24], we know that the statistical performance of the combined classifier can be
significantly better than the performance of individual classifiers. However, the system
can not detect (i.e. separate from the traffic) the attacks that none of the individual
algorithms can robustly detect.

In our future work, we plan to improve the attack modeling capabilities by inclusion
plan-based attack modeling, and to integrate the outputs of the adaptation layer with the
alert fusion and correlation capabilities of the system. This combination assess which
attack stages are unlikely to be detected, and can use this information to improve the
alert correlation [25].

Acknowledgment. This material is based upon work supported by the ITC-A of the US
Army under Contract No. W911NF-08-1-0250. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the ITC-A of the US Army. Also supported by Czech
Ministry of Education grants 6840770038 (CTU) and 6383917201 (CESNET).

Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems 79

References

1. Denning, D.E.: An intrusion-detection model. IEEE Trans. Softw. Eng. 13, 222–232 (1987)
2. Staab, E., Fusenig, V., Engel, T.: Towards trust-based acquisition of unverifiable information.

In: Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS (LNAI), vol. 5180, pp.
41–54. Springer, Heidelberg (2008)

3. Rehák, M., Pechoucek, M., Grill, M., Bartos, K.: Trust-based classifier combination for net-
work anomaly detection. In: Klusch, M., Pěchouček, M., Polleres, A. (eds.) CIA 2008. LNCS
(LNAI), vol. 5180, pp. 116–130. Springer, Heidelberg (2008)

4. Rehák, M., Pechoucek, M., Bartos, K., Grill, M., Celeda, P., Krmicek, V.: Improving anomaly
detection error rate by collective trust modeling. In: Lippmann, R., Kirda, E., Trachtenberg,
A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 398–399. Springer, Heidelberg (2008)

5. Cisco Systems: Cisco IOS NetFlow (2007), http://www.cisco.com/go/netflow
6. Scarfone, K., Mell, P.: Guide to intrusion detection and prevention systems (idps). Technical

Report 800-94, NIST, US Dept. of Commerce (2007)
7. Xu, K., Zhang, Z.L., Bhattacharrya, S.: Reducing Unwanted Traffic in a Backbone Net-

work. In: USENIX Workshop on Steps to Reduce Unwanted Traffic in the Internet (SRUTI),
Boston, MA (2005)

8. Lakhina, A., Crovella, M., Diot, C.: Mining Anomalies using Traffic Feature Distributions.
In: ACM SIGCOMM, Philadelphia, PA, pp. 217–228. ACM Press, New York (2005)

9. Lakhina, A., Crovella, M., Diot, C.: Diagnosis Network-Wide Traffic Anomalies. In: ACM
SIGCOMM 2004, pp. 219–230. ACM Press, New York (2004)

10. Ertoz, L., Eilertson, E., Lazarevic, A., Tan, P.N., Kumar, V., Srivastava, J., Dokas, P.: Minds
- minnesota intrusion detection system. In: Next Generation Data Mining. MIT Press, Cam-
bridge (2004)

11. Sridharan, A., Ye, T., Bhattacharyya, S.: Connectionless port scan detection on the backbone,
Phoenix, AZ, USA (2006)

12. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision
making. IEEE Transactions on Systems, Man, and Cybernetics 18, 183–190 (1988)

13. Rubinstein, B.I.P., Nelson, B., Huang, L., Joseph, A.D., Lau, S.-h., Taft, N., Tygar, J.D.:
Evading anomaly detection through variance injection attacks on PCA. In: Lippmann, R.,
Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 394–395. Springer,
Heidelberg (2008)

14. Moore, A.P., Ellison, R.J., Linger, R.C.: Attack modeling for information security and sur-
vivability. Technical Report CMU/SEI-2001-TN-001, CMU Software Engineering Institute
(2001)

15. Quine, W.: A way to simplify truth functions. American Mathematical Monthly 62, 627–631
(1955)

16. Moore, D.S.: The Basic Practice of Statistics, 4th edn. W. H. Freeman & Co., New York
(2007)

17. Polikar, R.: Esemble based systems in decision making. IEEE Circuits and Systems Mag. 6,
21–45 (2006)

18. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and anal-
ysis of attack graphs. In: SP 2002: Proceedings of the 2002 IEEE Symposium on Security
and Privacy, Washington, DC, USA, p. 273. IEEE Computer Society, Los Alamitos (2002)

19. Zhang, Y., Fan, X., Wang, Y., Xue, Z.: Attack grammar: A new approach to modeling and
analyzing network attack sequences. In: Proc. of the Annual Computer Security Applications
Conference (ACSAC 2008), pp. 215–224 (2008)

20. Sarmenta, L.F.G.: Sabotage-tolerance mechanisms for volunteer computing systems. In: CC-
GRID 2001: Proc. of the 1st Int. Symposium on Cluster Computing and the Grid, Washing-
ton, DC, USA, p. 337. IEEE Computer Society, Los Alamitos (2001)

http://www.cisco.com/go/netflow

80 M. Rehák et al.

21. Zhao, S., Lo, V., GauthierDickey, C.: Result verification and trust-based scheduling in peerto-
peer grids. In: P2P 2005: Proc. of the 5th IEEE Int. Conf. on Peer-to-Peer Computing, Wash-
ington, DC, USA, pp. 31–38. IEEE Computer Society, Los Alamitos (2005)

22. Giacinto, G., Perdisci, R., Rio, M.D., Roli, F.: Intrusion detection in computer networks by a
modular ensemble of one-class classifiers. Information Fusion 9, 69–82 (2008)

23. Ghanbari, S., Amza, C.: Semantic-driven model composition for accurate anomaly diagnosis.
In: ICAC 2008: Proceedings of the 2008 International Conference on Autonomic Computing,
Washington, DC, USA, pp. 35–44. IEEE Computer Society, Los Alamitos (2008)

24. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS
2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

25. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2D2: A formal data model for IDS alert corre-
lation. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516, pp. 115–137.
Springer, Heidelberg (2002)

	Runtime Monitoring and Dynamic Reconfiguration for Intrusion Detection Systems
	Introduction
	CAMNEP System
	IDS Monitoring Architecture
	Threat-Based Approach to Challenge Selection
	Attack Trees
	Attack Trees in Propositional Logic
	Attack Tree Valuation

	Dynamic Aggregation Agent Selection
	Optimizing Number of Challenges

	Experimental Evaluation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

