Optimizing Throughput by Modified IPv6 Headers

Gruschenka Steven and Uwe Fellensik and Edwin Steinblokker
University of Koln-Kalk
Robert Bosch Strasse 5
D-59769 Koln
e-mail: {steven,fellensick,steinblocker} @uni-kk.ge

Abstract—Modifying the header information in IPv6 intro-
duces various possibilities for optimization. Here, we show a
mechanism for enhancing the routing process which leads to
higher throughput, which is fundamental for high speed net-
works. We achieve this goal by extending the IPv6 header by
additional routing information. OQur routing algorithm “JUPP”
uses this information for optimal delivery of messages. By
prioritizing some messages we can guarantee throughput needs
that is required for some applications, such as VoIP or IPTV.
Our simulations showed that the bandwidth loss introduced by
the protocol is very low.

I. INTRODUCTION

The implications of interposable IPv6 models have been far-
reaching and efficient. Although experimental results at first
glance seem sufficient, it is contradicted by existing work
in the field. An unproven challenge remains in bandwidth
improvements and especially the study of congestion when
multiple paths are used. Contrarily, the algorithms based
on IPv6 header modifications alone can fulfill the need for
congestion control and bandwidth optimization at the same
time.

JUPP, our new application for signed theory, is the solution
to all of these obstacles [1], [2]. Unfortunately, semantic
epistemologies might not be the panacea that information
theorists expected. Similarly, we emphasize that JUPP is
derived from the principles of networking. Combined with
massive multiplayer online role-playing games, it enables a
reliable tool for refining link-level acknowledgements.

In our research, we make two main contributions. We con-
struct a system for “smart” symmetries (JUPP), verifying that
the acclaimed autonomous algorithm for the deployment of
context-free grammar by Maurice V. Wilkes [3] runs in O(n)
time. We prove not only that link-level acknowledgements and
wide-area networks are generally incompatible, but that the
same is true for Markov models.

The rest of this paper is organized as follows. For starters,
we motivate the need for the location-identity split. We place
our work in context with the related work in this area. Finally,
we conclude.

II. APPROACH

Consider the early model by Ramasubramanian et al.[4]; our
methodology is similar, but will actually fulfill this ambition.
This may or may not actually hold in reality. Similarly, we use
a prevalence area to estimate that the much-touted replicated
algorithm for the evaluation of the location-identity split by

Li runs in O(n!) time. Similarly, Figure III plots the basic
structure of JUPP. Rather than requesting RAID, our approach
chooses to learn 802.11b. Similarly, we executed a minute-long
trace demonstrating that our model is not feasible. This seems
to hold in most cases. Therefore, the design that Esteem uses
is unfounded.

Figures 1 shows the basic IPv6 protocol. Figure 2 shows
the IPv6 after modification for JUPP. Our implementation of
our method is peer-to-peer, perfect, and optimal. Congestion
bits help to manage congestion in an easy way: We count
the number of dropped packets at the respective hop and
add it to an incremented fill up stack. Once, a threshold is
reached, the algorithm stops. Similarly, since our application
improves the producer-consumer problem, programming the
hacked operating system was relatively straightforward. One
cannot imagine other methods to the implementation that
would have made implementing it much simpler.

III. MODEL

Our research is principled. Rather than managing the looka-
side buffer, JUPP chooses to analyze 802.11 mesh networks.
This may or may not actually hold in reality. Furthermore,
JUPP does not require such an extensive allowance to run
correctly, but it doesn’t hurt. Any essential analysis of event-
driven configurations will clearly require that the infamous
distributed algorithm for the refinement of local-area networks
by C. Hoare et al. runs in {2(n) time; our method is no differ-
ent. Although statisticians mostly assume the exact opposite,
our system depends on this property for correct behavior.
We assume that agents can be made signed, “fuzzy”, and
decentralized. We use our previously simulated results as a
basis for all of these assumptions.

We estimate that secure models can request multicast
methodologies without needing to request A* search. We as-
sume that the well-known efficient algorithm for the emulation
of Internet QoS is maximally efficient. Continuing with this
rationale, we consider an application consisting of n active
networks. This seems to hold in most cases. Thusly, the model
that our framework uses is not feasible.

IV. IMPLEMENTATION

Though many skeptics said it couldn’t be done (most
notably Harris et al.), we introduce JUPP, a fully-working
version of an IPv6 Header extension. The IPv6 instruction set
is extended in a bandwidth accelerating way. We have not

+ | Bits -3
0
32
64
96

4-11
Traffic Class
Payload Length

12-15
Version

16-23 24-31
Flow Label

Next Header Hop Limit

Source Address

128
160
192
224

Destination Address

256
288

Fig. 1.

+ | Bits 0-3 |HNCONGEStOMBIEIN 12-15
0 | Version Tratfic Clags
32
64
96

Basic IPv6 Header

16-23 2431

Next Header Hop Limit

Source Address

128
160
192
224

Destination Address

256
288

Fig. 2.

Fig. 3.

Architecture of JUPP.

yet implemented the server daemon, as this is the least typical
component of our algorithm. The homegrown database and the
collection of shell scripts must run in the same JVM. we plan
to release all of this code under Microsoft’s Shared Source
License.

The hand-optimized headers contains about 333 bits. Along
these same lines, the collection of shell scripts and the server
daemon must run in the same IPv6 kernel. despite the fact

IPv6 Header modified for JUPP

that we have not yet optimized for usability, this should
be simple once we finish implementing the codebase of
25 IPv4 files. A number of prior systems have simulated
“fuzzy” methodologies, either for the refinement of link-
level acknowledgements or for the improvement of link-level
acknowledgements. Recent work by Robin Milner et al.[5]
suggests a heuristic for allowing operating systems, but does
not offer an implementation. This method is more flimsy than
ours. An analysis of digital-to-analog converters proposed by
Brown and Wang fails to address several key issues that our
application does surmount. Richard Stearns et al. [6] originally
articulated the need for ubiquitous models. We plan to adopt
many of the ideas from this previous work in future versions
of JUPP.

V. EVALUATION

As we will soon see, the goals of this section are manifold.
Our overall evaluation strategy seeks to prove three hypothe-
ses: (1) that block size is an outmoded way to measure 10th-
percentile time since 1980; (2) that we can do little to adjust
a framework’s USB key space; and finally (3) that we can
do a whole lot to affect an approach’s ROM speed. Actually,

this sentence exists only to make more clear that we do not
aim at providing any reasonable input. Rather, we want to
show how efficient IPv4 can act on a score like the one
above mentioned. Note that we have intentionally neglected to
visualize 10th-percentile throughput. The reason for this is that
studies have shown that median power is roughly 44% higher
than we might expect [7]. Our evaluation approach will show
that instrumenting the software architecture of our operating
system 1is crucial to our results.

A. Hardware and Software Configuration

Though many elide important experimental details, we
provide them here in gory detail. We scripted an emulation on
our Planetlab cluster to disprove wireless models’s inability
to effect J. Zheng’s study of courseware in 1953. we only
characterized these results when emulating it in hardware.
We added more tape drive space to our Planetlab testbed to
quantify the work of Italian convicted hacker Andrew Yao. The
joysticks described here explain our expected results. Further,
we halved the NV-RAM speed of our human test subjects.
Configurations without this modification showed duplicated
expected distance. We added 2 CPUs to our desktop machines.
With this change, we noted duplicated latency improvement.
Similarly, we removed 10 2kB hard disks from our system
to consider our sensor-net overlay network. With this change,
we noted amplified latency degredation. Next, we added 3
CPUs to our pervasive overlay network to disprove V. G.
Gopalakrishnan’s study of access points in 1986 [8]. In the
end, we added some 2GHz Athlon 64s to our mobile testbed.

The existence of large headers make it basically impossible
to flip down any complexity bound. Still, we found some
interesting features that are able to improve the bounds in
unexpected dimensions. We ran JUPP on commodity oper-
ating systems, such as Microsoft Windows Longhorn and
TinyOS Version 5.6.5, Service Pack 7. we implemented our the
location-identity split server in enhanced Dylan, augmented
with computationally partitioned extensions. We added support
for JUPP as an embedded application. All of these techniques
are of interesting historical significance; O. Takahashi and C.
Antony R. Hoare investigated a similar heuristic in 1986.

B. Experimental Results

We have taken great pains to describe out evaluation method
setup; now, the payoff, is to discuss our results. That being
said, we ran four novel experiments: (1) we measured USB
key throughput as a function of hard disk speed on a LISP
machine; (2) we compared distance on the DOS, LeOS and
DOS operating systems; (3) we ran gigabit switches on 83
nodes spread throughout the sensor-net network, and compared
them against 2 bit architectures running locally; and (4) we
asked (and answered) what would happen if extremely lazily
fuzzy symmetric encryption were used instead of SCSI disks
[2].

Now for the climactic analysis of the second half of our
experiments [9], [10], [4], [11]. The key to Figure V-B
is closing the feedback loop; Figure V-B shows how our

8192

<
[0}
o
= 4096 |
[0]
[0}
Q
7]
2048
32 64

network congestion density

Fig. 4. Network congestion of JUPP for the IPTV scenario.

64
@
o
o
<
* 32
o)
o
c
IS
k7
o
16 '
16 32 64
route diversity
Fig. 5. Route diversity introduced for different hop counts.

methodology’s USB key space does not converge otherwise.
Operator error alone cannot account for these results. Note
that Figure V-B shows the effective and not mean extremely
parallel tape drive space.

How would our system behave in a real-world scenario?
In this light, we worked hard to arrive at a suitable eval-
uation strategy. Our overall evaluation seeks to prove three
hypotheses: (1) that optical drive space is more important
than average time since 1995 when optimizing response time;
(2) that massive multiplayer online role-playing games no
longer affect system design; and finally (3) that the IPv4 of
yesteryear actually exhibits better effective block size than
today’s hardware. We hope that this section sheds light on
the work of Soviet analyst B. White.

We have seen one type of behavior in Figures V-B and V-B;
our other experiments (shown in Figure V-B) paint a different
picture. We scarcely anticipated how wildly inaccurate our
results were in this phase of the evaluation strategy. The results
come from only 5 trial runs, and were not reproducible. Note
that Figure V-B shows the average and not average replicated
RAM speed.

Lastly, we discuss experiments (3) and (4) enumerated
above [8], [10]. Operator error alone cannot account for
these results [12]. Second, note that gigabit switches have
more jagged hard disk speed curves than do hardened virtual

50 . . - .
a0 L without JUPP {fm%z%@
A

35 e
$%$§§§ﬁ

30 | Sy

25y gﬁ*@g‘;‘ ’

20| ¥

15

10

5 with JUPP

distance (# hops)

15 20 25 30 35 40 45
route diversity

Fig. 6. Distance improvements through JUPP.

1e+83 T T T T T T T —
9e+82 |
8e+82
7e+82 ¢
6e+82 |
5e+82 |
4e+82
3e+82 |
2e+82 |
1e+82

bandwidth lost

+

0 " " " 4 o " - "
10 20 30 40 50 60 70 80 90 100
route diversity

Fig. 7. JUPP guarantees minimal bandwith loss.

machines. Error bars have been elided, since most of our data
points fell outside of 42 standard deviations from observed
means.

Estimates of the time frame until complete exhaustion of
IPv4 addresses used to vary widely. In 2003, Paul Wilson
(director of APNIC) stated that, based on then-current rates
of deployment, the available space would last until 2023.[13]
In September 2005 a report by Cisco Systems suggested that
the pool of available addresses would dry up in as little as 4
to 5 years.[10] As of November 2007[update], a daily updated
report projected that the IANA pool of unallocated addresses
would be exhausted in May 2010, with the various Regional
Internet Registries using up their allocations from IANA in
April 2011.[9] There is now consensus among Regional Inter-
net Registries that final milestones of the exhaustion process
will be passed in 2010 or 2011 at the latest, and a policy
process has started for the end-game and post-exhaustion era.

VI. RELATED WORK

The improvement of scalable communication has been
widely studied [12]. L. Miller et al. [13] and Smith proposed
the first known instance of large-scale communication [5].
Next, a recent unpublished undergraduate dissertation pre-
sented a similar idea for write-back caches. Though we have
nothing against the previous method, we do not believe that

approach is applicable to robotics. This approach is more
flimsy than ours.

A number of related methodologies have simulated homoge-
neous communication, either for the exploration of RAID [14],
[15], [16] or for the emulation of RAID [1], [17]. It remains
to be seen how valuable this research is to the cryptoanalysis
community. Further, unlike many previous approaches, we do
not attempt to allow or observe highly-available archetypes
[10]. In general, our algorithm outperformed all related sys-
tems in this area [13]. We believe there is room for both
schools of thought within the field of machine learning.

While we know of no other studies on the understanding
of operating systems, several efforts have been made to
develop evolutionary programming [11]. Similarly, although
Edgar Codd also explored this approach, we evaluated it
independently and simultaneously [10]. JUPP also explores the
evaluation of sensor networks, but without all the unnecssary
complexity. U. Kobayashi et al. [18], [19] suggested a scheme
for improving modular symmetries, but did not fully realize
the implications of the refinement of Lamport clocks at the
time [20]. As a result, the class of methodologies enabled by
our heuristic is fundamentally different from prior solutions.

This may or may not actually hold in reality. Rather than
emulating the understanding of IPv6 headers, JUPP chooses to
simulate “smart” symmetries. We assume that each component
of JUPP emulates certifiable configurations, independent of all
other components. Despite the fact that information theorists
generally hypothesize the exact opposite, our method depends
on this property for correct behavior. Any natural evaluation
of the partition table will clearly require that spreadsheets
and digital-to-analog converters can interfere to realize this
mission; Esteem is no different. It might seem counterintuitive
but is supported by prior work in the field. The question is,
will JUPP satisfy all of these assumptions? It is. Also, we
should mention SCIgen which was used to generate this high
quality paper. Only the abstract and the figures 1 and 2 were
hand written.

VII. CONCLUSION

In conclusion, here we introduced JUPP, an algorithm that
exploits IPv6 header information for improving the through-
put. In fact, the main contribution of our work is that we
integrated a read-write tool for architecting the header com-
plementation problem, demonstrating that the famous real-time
algorithm for the improvement of bandwidth by Y. Jones [21]
runs in ©(n?) time and with low hop distance. We plan to
make our heuristic available on the Web for public download.

We verified that the location-identity split for IPv6 can
synchronize the headers to address the optimization question.
To answer this quandary for IPv6 and 802.11b, we motivated
an analysis of compatible operating systems [15]. We expect
to see many router implementations move to emulating JUPP
in the very near future.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]
[16]
[17]

(18]

[19]

[20]

[21]

REFERENCES

S. Thompson, “Towards the deployment of journaling file systems,” in
Proceedings of the Workshop on Heterogeneous, Embedded Symmetries,
Feb. 2005.

A. Tanenbaum, W. Bhabha, and H. Levy, “PARA: Replicated, certifiable
algorithms,” Journal of Empathic, Client-Server Archetypes, vol. 80, pp.
20-24, Jan. 1995.

W. Kahan, K. Iverson, Z. Narayanaswamy, and W. Thomas, “Construc-
tion of DHCP,” in Proceedings of FOCS, Jun. 2003.

E. Schweinsteiger and R. T. Morrison, “Evaluating kernels and forward-
error correction using Mabby,” in Proceedings of OSDI, Jul. 1994.

J. Cocke, P. Li, J. McCarthy, Q. Sun, J. McCarthy, B. Bhabha,
and I. Daubechies, “Contrasting gigabit switches and wide-area net-
works,” in Proceedings of the Symposium on Distributed, Heterogeneous
Archetypes, Jul. 2003.

M. Gayson and E. Schweinsteiger, “Sacque: Read-write, efficient sym-
metries,” Journal of Adaptive, Relational Epistemologies, vol. 17, pp.
75-96, Feb. 1997.

E. Schweinsteiger and I. Maruyama, “A methodology for the simulation
of active networks,” in Proceedings of the Conference on Adaptive,
Stochastic Algorithms, Aug. 2002.

K. Nygaard, G. Watanabe, M. Smith, E. Schweinsteiger, 1. Sutherland,
M. I Lee, and D. Estrin, “Decoupling Web services from the UNIVAC
computer in compilers,” NTT Technical Review, vol. 7, pp. 20-24, Jan.
2005.

J. Hopcroft, “Interactive, distributed theory,” in Proceedings of the
Workshop on Permutable, Probabilistic Configurations, Mar. 2003.

E. Codd, “A synthesis of the Turing machine,” in Proceedings of
ECOOP, Oct. 1990.

V. Ramasubramanian, M. V. Wilkes, D. Wang, and M. O. Rabin, “De-
constructing context-free grammar,” in Proceedings of the Symposium
on Psychoacoustic, Concurrent Epistemologies, Aug. 2004.

L. a. Smith and M. Gayson, “Certifiable, virtual technology,” in Pro-
ceedings of PODC, Jul. 2001.

R. Agarwal, Q. Takahashi, J. Gray, D. Patterson, E. Schweinsteiger,
D. Ritchie, O. Wu, and U. Qian, “Interactive, optimal, secure algorithms
for Moore’s Law,” Journal of Relational Methodologies, vol. 84, pp. 1-
11, Sep. 2004.

E. Schweinsteiger, E. Schweinsteiger, and K. Gupta, “A refinement of
simulated annealing using BEIGE,” in Proceedings of the Workshop on
Data Mining and Knowledge Discovery, Apr. 2000.

Q. Smith, “BEWIG: Simulation of e-business,” in Proceedings of
SIGMETRICS, Mar. 2003.

E. Schweinsteiger and V. Wilson, “A case for local-area networks,” in
Proceedings of FPCA, Jan. 2002.

B. Shastri, “Decoupling wide-area networks from congestion control in
spreadsheets,” in Proceedings of PODS, Nov. 2002.

J. McCarthy, P. Wilson, K. Thompson, N. Wirth, and J. Backus,
“Deconstructing operating systems with Ladkin,” CMU, Tech. Rep. 18-
7306, Feb. 2005.

A. Tanenbaum and R. Wilson, “Digital-to-analog converters considered
harmful,” in Proceedings of the Workshop on Interactive, Client-Server
Archetypes, Jul. 1995.

E. Gupta, A. Turing, and W. Bhaskaran, “Suist: Game-theoretic modal-
ities,” Journal of Ubiquitous, Reliable Communication, vol. 64, pp. 51—
66, Mar. 1999.

R. Thomas and N. Wirth, “FUZE: Pervasive, peer-to-peer methodolo-
gies,” in Proceedings of NOSSDAV, Feb. 2002.

