
PhD-FSTC-9-2010
Faculty of Sciences, Technology and Communication

Dissertation

Defense held on 16 April 2010 in Luxembourg

in candidature for the degree of

Doctor of the University of Luxembourg
in Computer Science

by

Eugen Staab
Born on 2 June 1981 in Merzig, Germany

Reliable Information Acquisition
in the Presence of Malicious Sources

Dissertation defense committee:

Dr. Claudia Eckert
Professor, Technische Universität München, Germany

Dr. Thomas Engel, Dissertation Supervisor
Professor, University of Luxembourg, Luxembourg

Dr. Guillaume Muller, Vice Chairman
CEA Saclay, France

Dr. Munindar P. Singh
Professor, North Carolina State University, USA

Dr. Leon van der Torre, Chairman
Professor, University of Luxembourg, Luxembourg

.

Online Version
22 April 2010

BibTEX entry:

@PhDThesis{staab10phd,

author = {Eugen Staab},

title = {Reliable Information Acquisition

in the Presence of Malicious Sources},

year = {2010},

month = {April},

school = {University of Luxembourg},

note = {Online Version, 2010-04-22}

}

Copyright © Eugen Staab, 2010.

Abstract
In distributed systems in which autonomous entities exchange information with
each other, these entities have the freedom to provide incorrect information. This
becomes especially relevant in scenarios where entities have incentives to do so, e.g.,
in peer-to-peer networks or volunteer computing systems. Cryptographic mechanisms
can help to ensure data integrity and authenticity. However, while these mecha-
nisms achieve a reliable transmission of information, they do not prevent the cre-
ation of incorrect information in the first place. Therefore, additional mechanisms
are necessary to enable an entity to assess the correctness of acquired information.

In specific applications, the correctness of acquired information can be verified, or
be assessed by means of plausibility checks. This is not possible in general, though.
Often the explicit verification of information is infeasible, for instance due to high
costs. In this thesis, we investigate different generic approaches to ensure the correct-
ness of information without explicitly verifying it. More precisely, we propose three
mechanisms, each of which is suitable for certain scenarios and tasks: a spot-checking
mechanism that uses known facts to ensure the correctness of acquired information;
an evidence-based trust model that learns – based on past experience – to exclusively
select trustworthy sources; and a collusion detection algorithm that addresses the main
threat to mechanisms that ensure the correctness of information by means of re-
dundancy. The proposed mechanisms are validated, theoretically and/or experi-
mentally, against plausible attack strategies of malicious sources. We show that our
mechanisms are able to deal with different kinds of attack strategies, and that our
trust model and the collusion detection algorithm successfully identify malicious
sources.

Keywords: Information Science, Artificial Intelligence, Sabotage Tolerance,
Computational Trust, Volunteer Computing.

3

Contents

Abstract 3

1. Introduction 8
1.1. Problem Statement and Objectives . 9

1.1.1. Objectives and Methodology . 10
1.1.2. Requirements . 11
1.1.3. Scope . 11

1.2. Contributions . 12
1.2.1. Spot-Checking with Challenges (Chapter 3) 12
1.2.2. Computational Trust in Information Sources (Chapter 4) 13
1.2.3. Replication (Chapter 5) . 13

1.3. Organization . 14

2. Background and State of the Art 15
2.1. Historical Development . 15
2.2. Fault and Sabotage Tolerance . 15

2.2.1. Byzantine Fault Tolerance . 16
2.2.2. The Sybil Attack . 17

2.3. State of the Art: Ensuring Information Correctness 18
2.3.1. Spot-Checking . 18
2.3.2. Redundancy . 19
2.3.3. Trust and Reputation Systems 20
2.3.4. Plausibility Checking . 22
2.3.5. Symbolic Approaches . 23
2.3.6. Incentive Compatibility . 23
2.3.7. Encrypted Computation and Code Obfuscation 24
2.3.8. Inherent Fault and Sabotage Tolerance 25

2.4. Problem Scenarios . 25
2.5. Terminology and Notations . 28

2.5.1. Basic Classification of Information Sources 28
2.5.2. Notations . 29

3. Spot-Checking with Challenges 30
3.1. Mechanism . 30

3.1.1. Procedure . 31
3.1.2. Correctness Estimates . 31

4

Contents

3.1.3. Accept Decision . 34
3.1.4. Creation of Challenges . 35

3.2. Optimal Number of Challenges . 35
3.3. Analysis . 37

3.3.1. Security Analysis . 37
3.3.2. Efficiency . 40

3.4. Runtime Evaluation and Adaptation of an IDS 41
3.4.1. Evaluation of Aggregators . 43
3.4.2. Adaptive Number of Challenges 45
3.4.3. Threat-Model Driven Challenge Selection 47
3.4.4. Evaluation . 52

4. Modeling Trust in Information Sources 56
4.1. Computational Trust Modeling . 56

4.1.1. Trust . 56
4.1.2. Modeling Trust . 58
4.1.3. Trust in Information Sources . 64

4.2. Evidence-Based Trust in Information Sources 65
4.2.1. Basic Model . 66
4.2.2. Evaluation of Basic Model . 71
4.2.3. Reducing Number of Challenges 78
4.2.4. Trust-Based Selection of Sources 82

4.3. Tuning Evidence-Based Trust Models 86
4.3.1. Trust Model Deployment as Game 87
4.3.2. Tuning Procedure . 89
4.3.3. Application . 93

5. Collusion Detection for Redundant Requesting 100
5.1. Redundant Requesting and Collusion 100
5.2. Model and Assumptions . 102

5.2.1. Plurality Voting . 102
5.2.2. Attacker models . 103

5.3. Collusion Detection Algorithm . 104
5.3.1. Estimating Correlation . 104
5.3.2. Clustering . 105
5.3.3. Algorithm . 106

5.4. Theoretical Analysis . 107
5.4.1. Computing Correlation . 107
5.4.2. Correlation as Similarity . 109
5.4.3. Undetectable Attack . 110

5.5. Evaluation . 110
5.5.1. Accuracy . 111
5.5.2. Computational Complexity and Running Time 114

5.6. Dealing with Suspects . 115

5

Contents

6. Related Work and Comparisons 116
6.1. Related Work . 116

6.1.1. Spot-Checking . 116
6.1.2. Collusion Detection . 118
6.1.3. Trust Modeling . 118

6.2. Comparative Study . 122
6.2.1. Applicability . 122
6.2.2. Accuracy . 122
6.2.3. Robustness . 122
6.2.4. Overhead and Complexity . 123

6.3. Common Issues . 124
6.3.1. High Churn Rates . 124
6.3.2. Dealing with Inhomogeneous Sources 124

6.4. Combination . 125

7. Summary and Perspectives 127
7.1. Spot-Checking with Challenges (Chapter 3) 127
7.2. Modeling Trust in Information Sources (Chapter 4) 128
7.3. Collusion Detection for Redundant Requesting (Chapter 5) 128
7.4. Summary of Main Contributions . 129
7.5. Strengths and Challenges . 130
7.6. Further Work . 131

7.6.1. Spot-Checking . 131
7.6.2. Trust Model . 131
7.6.3. Redundant Requesting and Collusion Detection 134

A. Proofs 135
A.1. Posterior Distribution . 135
A.2. Expected Damage . 135
A.3. Uncertainty . 136

B. Computing Margins of Error 139
B.1. Margin of Error for Means . 139
B.2. Margin of Error for Standard Deviations 140
B.3. One-Sided Margins Of Error . 142

C. Damage of Attack Classes 143

D. Results of Trust Model Tuning 145

E. Correlation of Sources 150
E.1. Computing Correlation . 150

E.1.1. Case UCm Attackers . 150
E.1.2. Case CCm Attackers . 151
E.1.3. Figures . 152

6

Contents

E.2. Amplification . 153

Nomenclature 156

Acknowledgments 159

Author’s Publications 160

Bibliography 163

7

1. Introduction

Enabled by the Internet, computing systems are becoming more and more distrib-
uted, and the entities taking part in the systems more and more autonomous. The
correctness of exchanged information becomes an important issue for these systems.
Faulty entities, and also entities with malicious intent, can provide incorrect infor-
mation that has to be detected.

In computer networks, cryptographic mechanisms can ensure the authenticity and
integrity of information that is sent from a node A to a node B. However, if A
is not only the sender, but also the creator of the information, these mechanisms
can generally not be used to ensure that A sends the correct information. Given
the possibility that the sender has incentives to provide incorrect information, the
receiver needs to verify the information. Unfortunately, in many distributed systems,
an explicit verification of received information is too time-consuming, not feasible
due to limited knowledge, or too costly. For instance, the latter is the case in volunteer
computing systems (e.g., SETI@home [11]), a specific form of distributed computing:

In volunteer computing, a central server, the “master”, assigns small computational
tasks to clients, the “workers”, which perform the computations and return their results
to the master. Workers are private PCs that have been made available by their human
owners, the volunteers. These volunteers want to contribute to the project for which
the computations are performed; an example for such a project is the study of protein
folding and related diseases [2]. The master has no control over the workers and so a
worker’s code can be patched by a volunteer. As a consequence, workers might return
incorrect results. This actually happened in practice due to programming errors in the
patches [105], but also due to malicious intent [10]. Therefore, results have to be verified
by the master. However, there is no efficient verification scheme for general computational
tasks [65]. Also, the verification of a result through recomputation and comparison is not
possible, because it is as costly as the computation of the result itself.

For this reason, mechanisms are required to ensure the correctness of received in-
formation without explicitly verifying it. There are two basic generic approaches to
this problem: spot-checking and replication. In the first approach, as before, node A
requests information from source B, and randomly checks some pieces of this in-
formation. Based on how correct the checked pieces of information are found to
be, node A can attain probabilistic estimates of the correctness of the remaining in-
formation. In the second approach, that is replication, node A requests the same
information from several randomly picked nodes B1, . . . , Bn. Assuming independence

8

1.1. Problem Statement and Objectives

between these nodes and a low number of malicious nodes, the information that is
returned by a majority or plurality of the nodes can be assumed to be correct.

The first goal of this thesis is to further the research on these two approaches. To
this end, we first propose a mechanism that is based on the idea of spot-checking.
The mechanism uses prepared challenges to check information sources, in partic-
ular in scenarios where even honest sources report information with an error rate
greater than zero. In the case of the second idea (replication), we ask the question of
how the independence assumption can be relaxed. For this purpose, we propose a
mechanism that detects colluding behavior between information sources.

In addition to spot-checking and replication, humans use a very effective third
approach, namely the trust they have in an information source. Once a human trusts
in an information source, he assumes that information coming from that source is
most probably correct. If a human encounters evidence for the untrustworthiness
of an information source, the trust in that source is decreased. Since Marsh’s first
attempt in 1994 [99], computer science research has made great efforts in formalizing
trust as a computational concept. The second goal of this thesis is to re-examine the
suitability of trust for an adoption to our problem. To this end, we first analyze to
what extent the concept of trust is applicable to automated information acquisition.
Motivated by this analysis, we propose a computational trust model and extend the
spot-checking mechanism with this model. The trust model can be used to guide the
selection of future information sources. Additionally, it helps to reduce the number
of challenges that are needed to spot-check trusted sources.

In the remainder of this section, we first restate the overall research problem in
a more formal manner. Besides this, we specify the objectives, the methodology,
the requirements and the scope of our research. We then show in which concrete
distributed systems the research problem actually appears. Afterwards, we summa-
rize the contributions of this thesis. Finally, we provide the reader with the needed
terminology and important notations, and describe how the thesis is organized.

1.1. Problem Statement and Objectives

Let an assertion (or piece of information) be a tuple (Q,R) that consists of a request Q
and a (corresponding) reply R, where both Q and R are formulated in a language
L with well-defined semantics. We call an assertion a fact, iff the request Q is a
question and the reply R contains all “correct” answers to this question, and only
these – in other words, the reply is comprehensive and valid. What a correct answer to
a question is depends on the semantics and shall not be addressed in this thesis. To
give an example, the tuple (5 + 7 = ?, 12) is a fact in a language that interprets “+”
as regular addition, and 5, 7 and 12 as natural numbers in base ten.

Let F ⊆ L × L be the set that contains all existing facts in L. Furthermore, let
v(x) : (L× L) → {true, false} be a function that states for any assertion whether it
is a fact, i.e., whether it is contained in F . We call v(x) an explicit verification function.
As stated above, an explicit verification function is often too costly to be computed,

9

1.1. Problem Statement and Objectives

potential information sources

requester

select &
request

reply

}
malicious / incompetent

Figure 1.1.: Abstract view of a distributed information system.

or is unknown, because for instance it requires background knowledge that an entity
does not have.

As shown in Figure 1.1, we look in this thesis at distributed information systems
from the perspective of one entity, the “requester”, that repeatedly requests informa-
tion from other entities, the “information providers” or “information sources”. To
keep things simple, we ignore the requester’s role as an information provider, and
the information providers’ roles as requesters. What is important is that the infor-
mation providers are autonomous entities and some of them might have malicious
intent towards the requester. To match this abstract perspective for instance to a P2P
system, both the requester and the information sources would be peers; for a vol-
unteer computing system, the requester would be the master, and the information
sources would be the workers.

The problem that we address in this thesis can now be stated as follows:

Requester A selects an information provider B, makes a requestQ to B, and receivesR as
sent by B; given the possibility that B provides incorrect information, how can A ensure
that (Q,R) is a fact, without making use of an explicit verification function v(x)?

1.1.1. Objectives and Methodology

The mechanisms which we propose in this thesis, and that approach the problem as
stated above, follow three design objectives:

• Minimize the overhead, that is, the ratio of acquired pieces of information to
usable pieces of information – for the case of a trustworthy source.

• Maximize the accuracy in the estimates of the error rate of acquired information.

10

1.1. Problem Statement and Objectives

• Make the mechanisms robust against attack strategies of malicious sources.

Instead of optimizing all three criteria at the same time, the mechanisms that we
present require trade-offs to be made. For example, in order to increase accuracy,
the overhead has to be increased as well.

For the evaluation of the proposed mechanisms in terms of the above objectives,
we use different methodologies. When appropriate, we provide a theoretical analysis
to show under which circumstances and how far the mechanisms fulfill the objec-
tives. To this end, we either mathematically prove that the claimed properties hold,
or provide probabilistic analyses for them. For situations where a theoretical anal-
ysis is not adequate, for instance due to complex dynamics, the mechanisms are
evaluated experimentally. To this end, we use simulations to measure the accuracy
of our mechanisms, and to compare their robustness to that of other mechanisms
that have been proposed in the literature. Details on which objectives are evaluated,
and how this is done, are given at the respective points in the thesis.

1.1.2. Requirements

Any proposed mechanism has to fulfill two requirements:

• It has to be executable by a computer system without the help of human inter-
vention.

• It must not use an explicit verification function v(x).

The first requirement is needed to make the solutions suitable for fully-automated
processes such as is the case in many distributed systems; we make this clearer
later in Section 2.4 where we show in which concrete application scenarios our ab-
stract problem occurs. The second requirement makes the mechanisms generic and
applicable to different applications. This is because we do not step down to the
syntactic/semantic level of the specific language L.

1.1.3. Scope

To keep the scope of the thesis reasonable, we restrict the type of information to
which our mechanisms are applicable, as follows:

1. The degree of truth of facts is binary, i.e., a reply R to a request Q is either
correct or incorrect (and nothing in between). In other words, a verification
function v(x) : (L × L) → {true, false} for the information exists (see also
Sect. 1.1).

2. The acquired information is objectively verifiable within the system, i.e., all
members of the system would agree on v(x).

11

1.2. Contributions

Examples of the type of information that fulfills these restrictions are the results
of mathematical computations, for instance as they occur in volunteer computing
systems. In theory, the result of a computational task is (1) either correct or not, and
(2) objective. If in practice the original information has no binary degree of truth, an
acceptance range can be defined within which a piece of information is considered
to be correct.

As shown in Figure 1.1, the requester can choose from a set of information sources,
which we denote by S . Motivated by the volunteer computing scenario, we focus
on situations in which all sources in S are able to reply to a request. In some other
application scenarios such as file sharing, only a subset of S is able to reply to a
specific request. Even though we do not explicitly address this case, the mechanisms
proposed in this thesis would be applicable. Furthermore, we assume that sources
always reply to requests. However, in the outlook of this thesis in Section 7.6.2, we
describe an initial idea to deal with non-replying sources.

1.2. Contributions

In this thesis, we make contributions to three approaches to the stated problem,
namely in the areas of spot-checking, computational trust and replication. We pay spe-
cial attention to the possibility of malicious information sources that pursue their
goals by using sophisticated strategies. In the following, we outline our main contri-
butions in form of research questions. These questions are further detailed later in
the respective chapters.

1.2.1. Spot-Checking with Challenges (Chapter 3)

The idea of spot-checking can be applied in different ways. One way is to spot-check
information sources from time to time and to blacklist them if they provide incorrect
information too often (e.g., see Sarmenta [133]). Another approach is used in do-
mains where information is allowed to have a certain error rate. There, spot-checking
can be used to estimate the error rate of a set of acquired pieces of information. Such
an approach has been proposed by Germain-Renaud and Monnier-Ragaigne [60].
For such domains, we suggest a mechanism that addresses the following question:

Q1: How may we apply spot-checking if the creation of spot checks at runtime is infeasible?

In this case the number of spot checks, which we call the challenges, has to be deter-
mined before a request is made, and so the following question arises:

Q2: What is the optimal number of challenges for a given number of real requests?

We show how to optimize the number of challenges in respect to the costs caused
by (1) the incorrect information that goes undetected and (2) the preparation of the
challenges.

12

1.2. Contributions

Finally, we present a concrete application of spot-checking to an intrusion detec-
tion system. As an exception, we are not dealing with binary truth values in this
case, but with real-valued estimates about the truth, which itself is still binary; for
this scenario, we propose an alternative way of optimizing the number of challenges.
In addition to this, we show how a deliberate composition of challenges from differ-
ent types of challenges can be used to tune the configuration of the system.

1.2.2. Computational Trust in Information Sources (Chapter 4)

In this part of the thesis, we study the computational modeling of trust in informa-
tion sources. In particular, we address the following questions:

Q3: What does it mean to “trust in an information source?”

Q4: What information should be used as evidence for a source’s trustworthiness?

Having done this, we develop an evidence-based trust model that is based on the
spot-checking mechanism proposed in Chapter 3. This trust model provides an
answer to the following question:

Q5: How may we build trust in an information source if we cannot directly verify the
information acquired from it?

In this trust model, we explicitly model the uncertainty that is inherent in a trustwor-
thiness assessment; we prove that it fulfills the two essential properties of uncertainty
measures postulated by Wang and Singh [167]. Extending the idea of Quiz [185], we
then show how to use trust to reduce the number of challenges. Most evidence-
based trust models, and our model in particular, are parameterizable. Thus, the
question arises of how to configure these models:

Q6: How may we systematically set optimal parameters of evidence-based trust models?

To approach this question, we propose a tuning procedure for evidence-based trust
models that is based on game-theoretic considerations, and apply this procedure to
our trust model.

1.2.3. Replication (Chapter 5)

In redundant requesting, the same information is requested redundantly from sev-
eral information sources. The replies that form a majority/plurality are believed to
be correct. This belief is based on the assumptions that information sources act inde-
pendently and that malicious sources are rare. However, in the scenarios considered
here, information providers can communicate among themselves over the Internet
without being observed. In addition to this, the Sybil attack enables an attacker
to control a considerable number of sources. This makes collusion attacks feasible.

13

1.3. Organization

In this attack, several information sources collectively return the same incorrect in-
formation. If they reach the required number of identical replies, their incorrect
information is accepted. To counter this main weakness of redundant requesting,
our research question is as follows:

Q7: How may we detect collusion attacks against redundancy with plurality voting?

To answer this question, we propose a collusion detection algorithm as an alternative
to [138]. We evaluate the algorithm with respect to different attacker models, both
theoretically and experimentally.

1.3. Organization

The thesis is organized as follows. In Chapter 2, we review existing approaches to
the stated problem and point to application scenarios where the problem occurs.
The next three chapters contain our main contributions:

• Chapter 3 introduces the probabilistic spot-checking mechanism.

• Chapter 4 presents the computational trust model and shows how to tune it.

• Chapter 5 proposes the collusion detection algorithm.

These chapters also contain the evaluations of the respective mechanisms. In Chap-
ter 6, we put the thesis in the context of related work, and compare our contributions
with each other. Finally, we draw conclusions and identify possible future work in
Chapter 7.

14

2. Background and State of the Art

In this chapter, we discuss directions that have been taken in various areas of computer science
research to address the common problem of ensuring the correctness of acquired information.
Following this, we point to concrete application scenarios where this problem occurs.

Organization In Section 2.1, we shortly summarize the historical development of
those areas in computer science that deal with the issue of malicious or incompetent
information sources. We introduce in Section 2.2 the ideas of fault and sabotage
tolerance, and discuss the impact of the “Sybil attack” on these areas. In Section 2.3,
we review the main approaches to the considered problem from various fields of
computer science research. In Section 2.4, we point to application scenarios where
the considered problem occurs, and finally introduce in Section 2.5 terminology and
notations that are used in the remaining part of the thesis.

2.1. Historical Development

The emergence of the Internet has facilitated the immediate and automated exchange
of information on a global scale. To secure exchanged information, the field of
computer security has come up with solutions to the problems of authenticity and in-
tegrity of data. However, these solutions have not addressed the issue of the creation
of incorrect information by malicious or faulty sources. This problem has been inves-
tigated in another discipline, distributed systems research, where “fault tolerance”
has become a crucial characteristic. For distributed systems, initial solutions were
proposed many years ago to tolerate conflicting information coming from faulty
components. However, this area did not focus on the intentional and strategic be-
havior of malicious autonomous components. As the 21st century began, malicious
behavior was encountered in concrete volunteer computing and P2P systems. This
led to the development of the research field of sabotage tolerance, that is tolerance
against malicious entities. Apart from this, the idea of using computational trust in
the context of computer systems emerged and much research in this direction has
been done since.

2.2. Fault and Sabotage Tolerance

Fault tolerance describes the ability of a system to tolerate the failure of some of its
components. In distributed systems, fault tolerance is a crucial property with re-

15

2.2. Fault and Sabotage Tolerance

spect to reliability and dependability. To be robust against data transmission errors,
error detection and correction schemes such as checksums or error-correcting codes can
be implemented. To tolerate failures of single computers, multiple machines can re-
dundantly be deployed for the same task, so that the system tolerates some of them
failing. This idea of redundancy can also be found in algorithms that address the
issue of components that emit conflicting information. Below, we will first look at
one fundamental algorithm of this kind. The algorithm addresses the case of failing
components, but also of machines that have been compromised by adversaries with
the aim of sabotaging the system; Sarmenta has coined the term “sabotage toler-
ance” [133] to name this kind of tolerance against adversaries. The impact of the
Sybil attack on sabotage tolerance is discussed later.

2.2.1. Byzantine Fault Tolerance

In distributed systems, the malfunction of computers can lead to faulty information
being sent to other computers. If the computers cannot tolerate the incorrect infor-
mation, the whole system can destabilize and eventually crash. Lamport et al. [92]
reformulate this problem as the one that a group of Byzantine generals faces when
be sieging an enemy city. These generals, each of whom has set up camp with his
troops somewhere outside the city, can communicate via messenger only. Their aim
is to decide at some point in time on a common plan of action, e.g., to attack or
to retreat. The messengers are assumed to be reliable and honest. However, there
might be traitors among the generals. These traitors represent the malfunctioning
or malicious components in a distributed system. A traitor might send different
messages to different generals in such a way that eventually some of the gener-
als decide to attack, and others to retreat. The consequence of such a disagree-
ment would be that the whole Byzantine army is defeated. Lamport et al. allow
any possible behavior of the traitors. In the literature, this kind of attacker is re-
ferred to as a “Byzantine adversary”. The Byzantine generals need a procedure
that enables them to reach a common decision while tolerating a certain number
of traitors. In their paper, Lamport et al. show that there is no such procedure if
one third or more of the generals are traitors. For the case of 3m + 1 generals, of
whom at most m are traitors, they propose an algorithm that solves the problem.
This algorithm assumes that the messages are directly transferred from one gen-
eral to another, but they do not have to be signed. For the case in which messages
can be signed in a way that traitors cannot forge the signatures of loyal generals,
the authors propose an algorithm that solves the problem for m traitors and any
number of generals. To summarize, these algorithms guarantee that in a distrib-
uted system, any conflicting commands that are sent out by a certain number of
Byzantine adversaries can be tolerated. This is known as “Byzantine fault toler-
ance”.

16

2.2. Fault and Sabotage Tolerance

2.2.2. The Sybil Attack

The Sybil attack [40] poses a serious threat to “open” systems like P2P or volunteer
computing systems. In the Sybil attack, a single attacker generates a great number
of fake identities for use in a single system. Without being observed, the attacker
can control these identities to orchestrate a collective attack. This attack is possible
whenever a fake identity cannot easily be distinguished from a real identity; for in-
stance, in many file sharing systems one person can easily create several identities.
Indeed, Douceur [40] has shown that to completely eliminate the attack, (central-
ized) trusted certification is needed. However, in many of today’s systems such an
infrastructure is unwanted or not feasible, e.g., in P2P systems. Consequently, al-
ternative approaches have been proposed that try to reduce the effectiveness of the
attack [95]. The two basic ideas behind these approaches are:

• to make the creation of an identity costly, or

• to test whether there is a one-to-one relationship between machines and iden-
tities, and whether there is a human behind an identity.

To realize the first idea, one can for instance require for each identity to have installed
some “trusted device”, which itself is costly and so prevents an attacker from creat-
ing a great number of identities. However, this also makes it costly for all regular
users. To realize the second idea, “resource testing” can be used. In resource testing,
one checks whether one identity is backed by the capacity of one machine; however,
this was shown by Douceur to be ineffective at least theoretically. Also in practice,
if the attacker uses botnets1, resource testing will not help. Therefore, in addition
to resource testing, a check of whether a human is behind a machine is required.
To this end, “Completely Automated Public Turing tests” (CAPTCHAs) [162] have
been proposed. A CAPTCHA challenges an agent with a problem that can be easily
solved by a human, but is too hard to be solved by a machine (in a short time);
for example, the agent has to type a displayed word that is distorted in such a way
that no algorithm could quickly recognize the word, but a human could. To make
sure that each identity has a human and not a machine behind it, one can require a
CAPTCHA to be solved for each creation. Note that in our context we do not want
to challenge an information source with a CAPTCHA each time it provides a piece
of information, because we are targeting completely automated systems. Therefore,
a CAPTCHA could be requested for each creation of a new identity for an informa-
tion source. Using this approach, a human could still create thousands of identities
in a few hours, because a human can solve a CAPTCHA in a few seconds [31]. Be-
sides, attacks on CAPTCHAs have been found [64, 179, 108]. Thus, it is worthwhile
to explore alternative approaches. For instance, could an abnormal increase in the
number of identities be seen as evidence for some attacker creating a great number
of identities? To detect such a change would require global knowledge about the

1An attacker can use malicious software to take over private machines over the Internet, and utilize
their capacities for his own purposes.

17

2.3. State of the Art: Ensuring Information Correctness

number of identities, which in general is not easy to obtain in these systems. Also,
an attacker could counter this by slowly creating fake identities.2 Overall, we can
conclude that despite a number of different approaches, the possibility of a Sybil
attack cannot currently be ruled out.

The Sybil attack can serve as a starting point for launching further attacks. For in-
stance, to attack the protocol from the last section that solves the Byzantine generals
problem in the case without signed messages, an attacker could create a number of
identities that makes up more than a third of all identities. Also in reputation sys-
tems, in which entities collectively decide about the trustworthiness of other entities,
a large number of identities can be used to distort the real entities’ ratings, e.g., by
self-promotion of the collaborating entities [71]. As we will discuss in Chapter 6,
a trust model too can be affected by a large number of fake identities. Finally, all
systems that rely on the assumption that only a small fraction of all sources are ma-
licious, are vulnerable to the Sybil attack, because it provides a way of making this
assumption incorrect. This includes for example systems that use majority or plural-
ity voting (e.g., EigenTrust [81]). We will consider another such system in Chapter 5,
and propose an algorithm that helps to detect larger fractions of attackers, for in-
stance caused by the Sybil attack.

2.3. State of the Art: Ensuring Information Correctness

Several areas in computer science research are confronted with the problem of un-
reliable information. As a consequence, several approaches have been proposed to
solve this problem. In the following we review what we consider to be the main
ideas.

2.3.1. Spot-Checking

The idea of statistical sampling [107] is to randomly take samples from a population
to estimate properties of the whole population. Spot-checking uses this technique to
“spot-check” a service provider from time to time – without prior warning. In this
way, the overall quality of service of a service provider can be assessed. To spot-
check an information provider, information can be requested from time to time that
is already known or that can be verified easily. If the information provider does not
know which information will be checked by the requester, the spot checks can be
used to learn about the expected quality of the provided information. In the domain
of volunteer computing, several such approaches have been proposed [133, 185, 60];
in Section 6.1, we will explain these approaches in more detail, and compare them
to our work. Spot-checking can also be used to check intermediate checkpoints that
a source must pass through in order to formulate a final result [41, 127].

2Actually this behavior is also encountered in port scanning, where attackers send only one packet
a day, and so go undetected by many intrusion detection systems.

18

2.3. State of the Art: Ensuring Information Correctness

To apply statistical sampling to test information sources, certain assumptions have
to be fulfilled. If the source is malicious, it will try to identify the spot checks and
to respond to these better than to other requests. Therefore, spot checks have to
be unidentifiable. This also implies that spot-checking is not done in a predictable
way, e.g., every hour, because a source might exploit this knowledge. Besides, a
source might be more competent in certain domains, and less competent in others.
Thus, depending on the application, sampling has to be made in a context-sensitive
fashion. Also, the quality of the information provided by a source might change over
time. To reflect this, statistical sampling has to be time-sensitive, and for instance use
forecasting techniques such as trend estimation.

2.3.2. Redundancy

A technique that is currently used in volunteer computing [10] is based on the idea
of redundancy. We will call this technique “redundant requesting”; in the literature
it is called “replication” or simply “redundancy”. A piece of information is redun-
dantly requested from several sources that have been picked randomly from a set
of potential sources. Only if all, or a majority, or a plurality, of the sources returns
the same information, this information is accepted. As long as the probability of
a source returning incorrect information is low, the probability that many sources
return the same incorrect information is negligible. Redundant requesting is easy to
implement and robust against many forms of malicious behavior of sources. Fur-
thermore, it can be used in scenarios where spot checks are too expensive or not
possible: In a sense, the sources check each other. However, the mechanism is based
on the assumption that the sources are independent. As we will show in Chapter 5,
redundant requesting is sensitive to colluding malicious sources, especially if they
are numerous – the Sybil attack could be used to this end. Therefore, we propose a
mechanism for collusion detection that helps to reduce this threat.

The idea of redundancy can also be used to test global knowledge via some Inter-
net search engine:3 One can use the count of occurrences that such a search engine
displays to vote on alternatives. For example, a person wonders whether it is bet-
ter to finish an email with “Best wishes” or with “Great wishes”. Google returns
25, 000, 000 and 17, 700 hits respectively. So, the person might decide on the first
alternative. In another example, a person wants to know how to spell “neighbor”.
Google returns around 45 million hits for “neighbor” and around 12 million hits for
“neighbour”. However, which spelling is correct depends in this case on whether
British or American English is intended. This shows that redundancy only works if
there is an absolute truth, or one is interested in the “most common truth”. Another
implicit requirement for redundant requesting is that the requests are truly made in
parallel, because the underlying “truth” might change over time. So, in the same
way as for spot-checking, redundancy is context- and time-sensitive. Finally, a cru-
cial prerequisite for the applicability of redundancy is that errors in information are

3For the following experiments, we consulted the Google Inc. search engine on 12-28-2009.

19

2.3. State of the Art: Ensuring Information Correctness

generally not positively correlated across the sources. To give an example, a majority
of websites might copy incorrect information from the same source website. In this
case, redundancy would most probably accept this incorrect information, unless it
could trace back the information to its origin; an approach to log the provenance of
information is discussed below in Section 2.3.3.3.

2.3.3. Trust and Reputation Systems

A very broad definition of “trust” is given by Diego Gambetta [59]:

“Trust (or, symmetrically, distrust) is a particular level of the subjective
probability with which an agent assesses that another agent or group of
agents will perform a particular action, both before he can monitor such
action (or independently of his capacity ever to be able to monitor it) and
in a context in which it affects his own action [...].”

The mentioned “action” can for instance be the provision of correct information. This
definition then reflects the problem that we are facing, namely that the information
cannot be checked for its correctness. Thus, “to trust” means that, given that a source
is trustworthy, the information it provides can be believed to be correct. The problem
is how one can know about the trustworthiness of a source. Below, we will discuss
important approaches to assess the trustworthiness of autonomous entities.

Remark: The term “trust” is also used in the context of the “web of trust” (e.g.,
see [7]). Based on the assumption that trust is transitive in a certain manner, it can
be used to build decentralized public key infrastructures (PKI). For instance, if entity
A trusts entity B, and B trusts C, then A also trusts C. A PKI can be built along such
chains of trust, which in turn helps to ensure data integrity and authenticity. Again,
this does not solve the problem of the creation of incorrect information. In our case,
we are therefore more concerned with the concept of evidence-based trust.

2.3.3.1. Evidence-Based Trust

Evidence-based trust is trust that is derived from past experiences with other entities.
The first formal model in this direction was proposed by Marsh [99]. Since then,
many other trust models have been proposed (for an overview see for instance [117,
12]). Their common idea is to distinguish between positive and negative experiences,
and then to increase or decrease the trust in an entity respectively. How this is
done in detail has to be specified by the trust model. For example, a trust model
could classify an entity as trustworthy as long as only positive experiences with
that entity have been had; it could also compute some numerical trust measure
from the gathered evidence. Evidence-based trust can help to increase knowledge
about other entities, and in particular about information sources. Simply put, if
a trust model classifies an information source as trustworthy, it estimates that the

20

2.3. State of the Art: Ensuring Information Correctness

source will provide correct information in the future as well. Because a trust model
might incorrectly classify an untrustworthy source as trustworthy, a certain risk is
involved in believing the information provided by a “trustworthy” source. This
implies that trust models have to be aware of untrustworthy sources that try to
make the model classify them as trustworthy. Generally speaking, a trust model has
to be robust against the manipulation strategies of malicious sources. In our case,
another problem is caused by our assumption that the acquired information cannot
be verified directly; this makes it hard to collect evidence: if one does not know
whether the information that a source provided in the past was correct, one has no
direct evidence about this source’s trustworthiness. In this thesis, we propose a trust
model that addresses these two problems.

2.3.3.2. Reputation Systems

In reputation systems [125], several entities share information about the trustworthi-
ness of other entities. This information can consist of direct experiences or complete
trustworthiness assessments. The information that comes from a reputation system
can then be used by single entities to make their trustworthiness assessments of oth-
ers. The collaboration of entities can speed up the process of detecting malicious
sources. Reputation systems have for instance been proposed to fight pollution in
file sharing P2P systems [81, 177]. However, a reputation system itself can also be
subject to attacks where sources try to promote their trustworthiness by making ma-
nipulative reports [71, 157]. Therefore, even for the reputation systems themselves,
mechanisms for detecting untrustworthy sources are required.

2.3.3.3. Data Provenance and Data Trustworthiness

Another approach to ensuring the correctness of acquired data is based on combin-
ing data provenance with data trustworthiness [33], a rather novel field of research.
In data provenance, the path of some data from its origin to its destination is traced,
including all intermediate entities, and possible modifications. The data is then pre-
sented to a user together with the path(s) it has taken. Based on this, the user can
use his knowledge about the trustworthiness of the different entities on the path to
decide about the trustworthiness of the data itself. To help the user, a system could
provide assistance by displaying knowledge about the trustworthiness of the sources
taken for instance from a reputation system. Alternatively, the system could reply
to a user’s query with the information that appears the most trustworthy.

A combination of data provenance and trust seems to be a promising approach for
scenarios where multiple organizations exchange information with each other [19],
or for the Semantic Web [39]. It aids in remembering which entity has originally
created some piece of information, and which source modified the information, so
that afterwards the knowledge about these sources can help in assessing the trust-
worthiness of the resulting data. However, to this end, the trustworthiness of the
sources on the path has to be known. In our thesis, we address the isolated problem

21

2.3. State of the Art: Ensuring Information Correctness

of how this trustworthiness can be assessed. Thus, our results are relevant to the
approach of combining data provenance with trust. Data provenance on the other
hand, is not applicable in many of the scenarios that we are targeting with our thesis.
In volunteer computing, for instance, the information passes directly from a worker
to the master; thus there is no potentially untrustworthy path that the information
takes (the transfer over the Internet can be assumed to be reliable). In other systems,
such as classical P2P file sharing systems, only the last information provider matters,
which is why this thesis concerns itself with a simple information system as shown
in Figure 1.1 (Sect. 1.1).

2.3.4. Plausibility Checking

Sometimes specific knowledge about the information that one wants to acquire can
be used to efficiently check the plausibility of the information. Consider the example
of a robot that requests the average temperature over the last hour from another
robot, which is equipped with a temperature sensor. The requested robot reports
a measured value of 400°C. However, the requesting robot knows that the sender’s
maximal working temperature is at 45°C and that the reported value most probably
would have caused it to fail, and making it (highly) implausible. So, a machine can
for instance be given intervals outside of which values are implausible. In database
systems, this can be done by defining basic semantic constraints that have to be
satisfied by the data [116].

A field where plausibility can be used is that of wireless sensor networks. As
mentioned in the introduction, the sensors are subject to attacks where for exam-
ple someone holds a cigarette lighter close to a temperature sensor [165]. Also, the
sensors can fail and report incorrect measurements. There have been a variety of
approaches to counter this problem [114, 165, 24, 25]. For instance, the causal de-
pendency between measurements of sensors that are close to each other can often
be exploited to test the plausibility of the reported measurements. If a tempera-
ture sensor measures a very high temperature, and another sensor that is very close
measures a much lower temperature, this could be an indicator of the fact that one
sensor is reporting incorrect or manipulated information.

Also in the domain of software testing, specific knowledge can be used to effi-
ciently check the results of a computation. Wasserman and Blum [168] proposed a
means of checking the results of software at runtime. This becomes feasible through
“simple-checkers”. A simple-checker tests certain properties of the computed out-
put and recognizes errors with a very high probability. The idea is that the checking
is much easier than the computation under test. As an example of a simple checker,
they consider the task of sorting an array ~x. Sorting requires time Ω(n log n), but a
specific simple checker can test the resulting array ~y in linear time as follows. First
check in linear time whether the elements of ~y are in increasing order. Then check
whether ~y is a permutation of ~x; having modified the sorting algorithm such that
it maintains pointers from the elements in ~x to the elements in ~y, this can also be

22

2.3. State of the Art: Ensuring Information Correctness

done in linear time. This technique can also be used in cases where a computa-
tion is outsourced to another autonomous entity. To reduce the complexity further,
spot-checking can be used.

Clearly, the limitation of plausibility checking is that domain-specific knowledge
has to be known. Therefore, it is not applicable to general types of information, as
we require for our mechanisms.

2.3.5. Symbolic Approaches

In “multi-agent systems” [169, 175], the beliefs of an agent can be represented in
form of a propositional belief base, that is as a set of logical propositions that the
agent believes to be true. The research field of belief revision [58] is concerned with
the question of how to integrate a new belief into an existing belief base. However,
classical belief revision does not address the issue of the reliability of a source or
an observation [52]. In fact, the new belief that has to be integrated is assumed to
be correct or at least seen as more reliable than what is already in the belief base.
More precisely, to maintain consistency, old beliefs can be dropped, but according to
the AGM postulates [9], a new belief will always be part of the revised belief base.
Clearly, if the belief that has to be integrated is a statement coming from a malicious
or incompetent information source, this approach is not suitable. Another approach
would be to accept new beliefs only if they do not conflict with the existing belief set.
However, this approach does not address the case where the new belief is actually
correct and there is some error in the belief base. In conclusion, as a first step, a
proposition should be checked for correctness with some alternative technique, or
the trustworthiness of the source should be taken into consideration. If then the
proposition was believed to be correct, it could be integrated into a belief base in a
second step. Work in this direction has been done in the area of non-prioritized belief
revision [69]. How the correctness of some piece of information, and in particular a
proposition, can be assessed, is addressed in our thesis.

2.3.6. Incentive Compatibility

Instead of recognizing incorrect information, one can try to prevent its creation in the
first place. This concerns the case of malicious information sources that intentionally
provide incorrect information. If a malicious source is rational, it will do so only if
it can expect to get some utility out of it. Incentive-compatible mechanisms try to
reduce this utility by giving incentives to act honestly. The precondition for this is
that the utility function of the malicious sources is known, and that it is generally
possible to provide incentives which will have an impact on this utility function.
In some domains like electronic commerce or commercial P2P computing where
monetary incentives can be provided, such mechanisms are promising (e.g. [80, 65,
181]). However, these mechanisms are not applicable if a malicious source has its
highest utility if the utility of the other entities in the system is minimized; imagine

23

2.3. State of the Art: Ensuring Information Correctness

a source that provides incorrect information just because it enjoys sabotaging the
system. Also, in volunteer computing or file sharing systems, it is not clear what
suitable incentives could be.

2.3.7. Encrypted Computation and Code Obfuscation

As mentioned in the introduction, malicious workers that return incorrect results
pose a serious threat to the reliability of (volunteer) distributed computing systems.
As a consequence, several mechanisms have been proposed in the literature that ad-
dress the problem of result checking. A closer look at this field of research is taken in
the section on related work (Sect. 6.1), where we compare the proposed mechanisms
to ours. At this point, we mention approaches that take a slightly different view of
the problem of incorrect results than ours. The aim of these approaches is to make it
infeasible for a malicious host to modify the result computation code in a purposeful
way. Two of these approaches are encrypted computation and obfuscation (for a more
detailed description see for instance Appendix B in [132]). In encrypted computa-
tion, the requester encrypts the original function of interest f with some encryption
scheme E to give E(f). The encrypted function is then transferred to a worker,
who is expected to apply it to some input x. After the computation, the worker re-
turns the result, which is E(f (x)), to the requester. The requester finally applies the
corresponding decryption function E−1 to the result, and finds f (x). Consider the
following illustrative though naive example, where k denotes an integer constant:

f (x) = ex , (2.1)
Ek(f (x)) = f (x) + k , (2.2)

E−1
k (g(x)) = g(x)− k . (2.3)

Here the encryption function simply adds some integer to the original function. For
decrypting the result, the same integer has to be subtracted. To provide more pri-
vacy, the requester can use additional techniques such as homomorphic encryption
that allow the input also to be processed in encrypted form.

The idea of obfuscation is to transform the original program code into equivalent
code that is very hard to understand. Many different code transformations can be
applied; to give a very simple example, irrelevant code can be added or bogus data
dependencies can be introduced. It is important that these transformations make it
hard for humans and also for algorithms to “deobfuscate” the code.

Both encrypted computation and obfuscation make it hard for an attacker to mod-
ify the code in a reasonable way. However, they do not prevent a malicious host from
computing the correct results, but still returning incorrect results, e.g., random re-
sults. To this end, checksums and watermarking techniques can be inserted into the
code such that certain patterns appear in a correct result. The checksums or wa-
termarks have to be easy to check. While encrypted computation generates a large
overhead and is currently limited to specific computations, obfuscation cannot easily
been proven to be secure. According to Sarmenta [132], a composition of different

24

2.4. Problem Scenarios

techniques from this area might provide a final solution. Since these techniques are
limited to result checking, we consider more generic approaches in our work instead.

2.3.8. Inherent Fault and Sabotage Tolerance

There is evidence that specific types of parallel algorithms have the property of in-
herently tolerating a certain number of incorrect and/or dropped results. For the
latter, Gonzales et al. [67] provided first evidence that, in the context of volunteer
computing, this is actually the case for the use of genetic algorithms. A genetic algo-
rithm is a stochastic optimization technique that is inspired by the process of natural
selection (see also [73, 63]). It starts with an initial population of individuals whose
parameters can be set randomly. By means of selection, reproduction and mutation the
population evolves over several generations, and optimizes itself with respect to a
fixed fitness function. The algorithm usually stops if either the individuals cease to
improve, or a maximum number of generations is reached. The fact that the search
is performed with several individuals reduces the probability of getting trapped in
local maxima [63]; but it also lets several parallel search threads interact with each
other [129, p. 116]. A genetic algorithm is well-suited for parallel execution, because
each computation of the fitness function, which is usually the most costly part, can
be run on a separate machine; the only point where synchronization has to take place
is when all individuals of one generation have finished their fitness computation. It
is apparently the case that a certain number of dropped results can be tolerated. It
can also be conjectured that errors could be tolerated, because in a subsequent gen-
eration these errors are likely to be canceled out. However, the robustness of genetic
algorithms in the face of orchestrated attacks, and of large fractions of malicious
workers, seems to be an open issue in research. A collective of workers could for
instance try to direct the genetic algorithm towards a bogus maximum of the fitness
function.

2.4. Problem Scenarios

In many distributed information systems, autonomous entities create or modify in-
formation that is later accessed and used by other entities in the system. How these
distributed information systems are configured, and how the abstract problem that
we have defined in the previous section appears there, is detailed in the following
by giving illustrative example scenarios. For many of these scenarios, we point to
the incentives that entities have to intentionally provide incorrect information.

Volunteer Computing A volunteer computing system [132] is a centralized distrib-
uted computing system to perform large-scale parallel computations. As already
mentioned in the first part of the introduction, voluntarily participating people offer
the resources of their private PCs, the “workers”, usually in form of idle CPU cycles.

25

2.4. Problem Scenarios

Compared to the high acquisition and maintenance costs of centralized supercom-
puters, volunteer computing is very low-priced. This is one of the reasons why the
concept has become very successful and numerous projects have been launched (e.g.,
[3, 1, 15, 132, 11, 2, 4]). However, the drawback of using private PCs is that they
might return incorrect results because they fail due to overclocking or software er-
rors [105, 156], or because of malicious intent [10], e.g., because the workers want to
harm the master, or because they want to save resources (e.g., by returning random
results). One of the incentives for volunteers to cheat in SETI@home has been to
improve their position in the ranking that is published by the system and that shows
how much a volunteer has contributed [105]. Removing this ranking is not a solution
since it would also affect the incentives of many volunteers to participate. Alterna-
tively, for specific computations, “simple-checkers” can be used to verify results in
an efficient manner [168]. Unfortunately, no such mechanism is known for general
computations [65]. This shows the need for efficient and generic mechanisms that
check results for correctness. Although this thesis approaches the problem from a
more abstract perspective, the evaluations of our mechanisms are applicable to the
conditions in the scenario of volunteer computing.

File Sharing Peer-to-peer (P2P) systems can be defined as distributed computer sys-
tems where autonomous nodes (“peers”) share distributed computer resources such
as content, storage or computing power [103]. File sharing is a well-known class of
P2P systems that enables its peers to exchange digitally-stored information, such
as audio or video files. Nowadays, it accounts for the largest part of Internet traf-
fic [183]. In [134], Saroiu et al. analyze two popular file sharing systems. One of
their findings is that “peers tend to deliberately misreport information if there is an
incentive to do so”. They suggest that future systems need mechanisms to directly
measure and verify reported information. Certain types of information can directly
be verified. For instance, the reported bandwidth of a peer can be checked against its
actual download speed. However, if information cannot be directly verified, mecha-
nisms are needed that check information correctness in alternative ways. Examples
for this kind of information are incorrectly labeled music files, which cannot easily
be uncovered by machines. This fact is exploited by the pollution attack [96] where
damaged files are inserted into the system and then spread among the peers. The
reason for this attack is that the music industry wants to distract people from il-
legally downloading copyrighted material; here, the music industry has monetary
incentives to carry out this attack. The authors of [96] showed that in KaZaa more
than 50% of the copies of many popular files were actually “polluted”. There are
two ways in which a file can be polluted; either the content itself is damaged (content
pollution) or the description of the file does not match the content (metadata pollution).
The second attack especially cannot be easily discovered by a computer without hu-
man help, because a computer does not in general know what, for example, a file
named “J. S. Bach - Johannes Passion” should sound like.

26

2.4. Problem Scenarios

Wireless Ad Hoc Networks A Wireless Ad Hoc Network [158] is a network consisting
of autonomous wireless nodes that collaboratively organize routing infrastructure
in an ad hoc manner. The efficiency and fairness of these networks in terms of
throughput depends heavily on the correctness of exchanged routing information.
There is an incentive to manipulate this information, because nodes are limited in
battery power [139] and so try to minimize their own battery consumption. Thus, a
node A could for instance misreport to its neighbor B that a certain node C is not
reachable from A, in order to cause B to use an alternative route.

Wireless Sensor Networks A Wireless Sensor Network (WSN) [8] is a network that
consists of wireless nodes that are equipped with sensors. The nodes are spatially
distributed so that the sensors cover a certain area in which they can measure envi-
ronmental conditions such as temperature, humidity or pressure [8]. The measure-
ment data is transferred over multiple hops to a base station. In these networks, the
sensors might be subject to attacks. Wagner [165] gives the example of a network
consisting of sensors that measure the temperature in different rooms of a building;
the average temperature of all sensors is used to regulate the central air conditioning
unit. Now, assume that there is a person that wants the temperature in his room to
decrease. This person can attack the system by holding a lighted match close to a
sensor, which will cause the sensor to report an erroneous room temperature; as a
consequence, and in line with the attacker’s goal, the average measured temperature
increases and the air conditioning unit will decrease the temperature in all rooms.
This shows the need for checking information reported by the sensors.

Web services A Web service is a “software system designed to support interopera-
ble machine-to-machine interaction over a network” [5]. To give an example, a Web
service could offer the multiplication of large matrices. In general, information that
is provided by a Web service can be incorrect. As in the example of matrix multipli-
cation, the requesting machine does not want to explicitly verify the results. To this
end, mechanisms are required that help the requester machine to efficiently check
the information.

From a more general point of view, a Web service can be seen as a consultant
that advises a client. For this scenario, we showed in [143] that there are actually
situations where consultants have incentives to be ill-informed, and thus to provide
information which is not sufficiently checked for correctness. How strong these in-
centives are depends among other things on the fraction of ill-informed consultants
among all consultants, and the importance that a client attaches to the consultant’s
reputation and price respectively.

Public Knowledge Stores Wikipedia [6] is a well-known system that enables hu-
mans to share public knowledge over the World Wide Web. Because no semantics
are annotated, machines are not able to process the information on a semantic level.

27

2.5. Terminology and Notations

Table 2.1.: Basic classification of information sources.

Attitude Competence Class

honest high trustworthy

honest low unreliable

malicious high untrustworthy

malicious low -

However, the proposed Semantic Web [18, 136] makes information on the web pro-
cessable by machines. Also, a provision of such information by means of distributed
hash tables (e.g., [118, 153, 128, 184]) is imaginable. The peculiarity of public knowl-
edge systems in this vision is that no trusted entity could guarantee the correctness
of the available knowledge. However, without such a guarantee, autonomous data
processing could not rely on information coming from these systems. This would
especially be the case in the presence of malicious participants that try to manipu-
late the systems. Humans would be necessary to manually check the correctness of
the information. For large systems however this would not be feasible. Thus, when
making public knowledge systems usable for automated data processing, one key is-
sue will be to provide mechanisms that can check whether the provided knowledge
is correct.

2.5. Terminology and Notations

2.5.1. Basic Classification of Information Sources

In the main part of the thesis, we consider a basic classification of information
sources by two basic characteristics, their attitude towards the requester and their
competence. The attitude of an information provider can be honest or malicious. Hon-
est information providers exclusively provide information that they believe to be
comprehensive and valid with respect to the request; to be more formal, if the re-
quest is Q, then they always provide R, while believing that (Q,R) is a fact. Ma-
licious information providers in contrast provide as well information they believe
to be incorrect or incomplete. The competence of an information provider can be
high or low. By competence we refer to the ability to make sure that the provided
information is comprehensive and valid. In other words, a competent information
provider is more often correct in his beliefs about facts. Table 2.1 shows the four
resulting classes of information providers. Clearly, the ideal information source is a
trustworthy information provider. Unreliable or untrustworthy information providers
should be avoided. The difference between these two types is that an unreliable in-
formation provider is not aware of his incompetence and so unintentionally provides

28

2.5. Terminology and Notations

Table 2.2.: Confusion matrix

actual class

+ -

classification + true positive false positive

- false negative true negative

incorrect information, whereas an untrustworthy information provider intentionally
provides incorrect information but at the same time tries to stay undetected. As a
consequence an untrustworthy information provider is in general harder to identify.
Finally, there is a fourth class of information providers, namely those that are both
malicious and incompetent. Since they are not able to appear competent they should
not be able to successfully pretend to be trustworthy. Therefore, the main focus of
our work is on the first three classes of information sources. In Section 4.1.3, we take
a closer look at the attitudes and competences of information providers.

2.5.2. Notations

For probabilities, we use Jaynes’ notations [77]: capital letters for random variables,
and small letters for numerical values of the respective random variables. For ex-
ample, X denotes a random variable, and p(x) is short for p(X = x). Analogously,
we write capital P to denote discrete probability distributions, e.g., P(X); we use
lowercase p for single probabilities, e.g., p(x). For continuous distributions, we use
lower case function symbols, e.g., f (x).

To denote a set of values {x1, . . . , xk}, we use the notation {xi}k
1 or short {xi}i;

analogously we write (xi)i for tuples. To label the outputs of binary classification,
we use the common terminology illustrated in form of a “confusion matrix” in Ta-
ble 2.2. The symbols that are used in this thesis are itemized and explained in the
nomenclature below the appendix on page 156.

29

3. Spot-Checking with Challenges

In this chapter, we first present a probabilistic mechanism for assessing the error rate of
acquired information without making use of explicit verification. This mechanism mixes
requests with “challenges”, which are requests for already-known facts. In the second part of
the chapter, we apply the concept of challenges to an intrusion detection system. Challenges
allow for an evaluation and adaptation of the system at runtime, and also for an adjustment
of the system to counter more harmful threats.

Organization In Section 3.1, we describe the core spot-checking mechanism. Be-
cause challenges can be costly or difficult to formulate, it is important to keep the
number of challenges used small. For this reason, we show in Section 3.2 how to
choose an optimal number of challenges. In Section 3.3, the mechanism is analyzed
both in terms of its robustness against attackers and its efficiency. Finally, we show
in Section 3.4 how challenges can be used to test the possibly unreliable components
of an intrusion detection system.

This chapter is related to [150, 151] and [121, 122, 123].

3.1. Mechanism

The following mechanism is suggested by the way humans “spot-check” articles in
newspapers or magazines. As well as searching for flaws in arguments made by the
article, a reader checks the credibility of an article given the knowledge he already
has. The more contradictions with his knowledge that a reader finds, the less reliable
he thinks the article is. Our mechanism uses this idea in that it randomly merges
the requests for the information of interest with some “challenges”, i.e., requests
for already-known facts. The replies to the challenges can be verified, and so the
correctness of the remaining information can be estimated. Provided that challenges
cannot be identified, a malicious information source can only decide on the number
of incorrect answers that it is going to return. The more incorrect answers it returns,
the more it runs the risk to be uncovered.

In the following, we assume that an information provider has already been se-
lected, and that it is going to reply to all requests. The manner of selecting an
information source is addressed later in Chapter 4.

30

3.1. Mechanism

3.1.1. Procedure

Let F again be the set of all facts, and let K ⊂ F be the set of facts known by the
requester, i.e., its knowledge. Let M be the set of “real requests”, i.e., requests for
which the correct replies are not yet known. The requester picks a set of requests N
for which the correct replies are known; formally this means:

∀Q ∈ N : ∃R ∈ L : (Q,R) ∈ K . (3.1)

We call the requests in N “challenges”. It is important that the information source
cannot distinguish the challenges from the real requests. The requester randomly
merges M and N and sends the resulting set of requests M ∪ N to an information
source. The information source then returns |M ∪ N| replies. The replies to the
challenges can directly be verified: by checking whether the challenges together
with the corresponding replies are facts. As a result, one finds y incorrect replies
to the challenges. Based on this number, one can estimate the number of incorrect
replies to the real requests M (as shown below). If the probability of an acceptable
number of incorrect replies to the real requests is high enough, the replies can be
used. Otherwise they are discarded.

3.1.2. Correctness Estimates

At the outset, we need to make two assumptions: The correctness of different pieces
of information is statistically independent; and there is no way for an attacker to
distinguish the challenges from the real requests.

Let Z be the random variable of the overall number of incorrect replies to the
whole request M ∪ N. Let Y be the random variable of the incorrect replies to the
challenges only. We want to know P(Z|Y), because Z−Y is the number of incorrect
replies to the real requests M, and the value of Y is known. Let X denote this random
variable. Bayes’ theorem[17] states:

P(Z|Y) = P(Y|Z)P(Z)
P(Y)

. (3.2)

We can compute the denominator by marginalization over all possible values of Z.
This gives for a concrete value of Y:

p(y) = ∑
z

p(z)p(y|z) . (3.3)

Thus, we need only to show how to compute P(Y|Z) and P(Z). Because the chal-
lenges are indistinguishable from the real requests, and the correctness of the replies
is statistically independent (basic assumption), the incorrect replies are randomly
distributed among M and N. Therefore, we can solve P(Y|Z) with basic combinato-
rial considerations. There are (|N|y) possibilities for having y incorrect replies to the
challenges. Having z incorrect replies overall, the real requests get z − y incorrect

31

3.1. Mechanism

replies. So, for a given z, there are, for a certain y, (|N|y)(|M|z−y) many equally likely
cases. These are called the “favorable cases”. This allows to compute the probability
of a certain y for a given z by dividing the number of favorable cases, those for the
specific y, by all possible cases to distribute z incorrect replies among M ∪ N:

p(y|z) =
(|M|z−y)(

|N|
y)

(|M∪N|
z)

. (3.4)

For the “prior probability distribution” P(Z), or simply the “prior”, we have to
make an assumption on how probable a certain number k of incorrect replies is,
with k ∈ {0, . . . , |M ∪ N|}. In the general case, a uniform prior can be assumed, i.e.,
p(z) = 1/(|M ∪ N|+ 1). This assumption is based on the principle of indifference [77,
p. 40]; the principle states that if n mutually exclusive and exhaustive events are
indistinguishable, except for their names, then they must be assigned probability
1/n each. However, domain knowledge can be used to define a more accurate prior.
For instance, if it is known that information providers return correct information
most of the time, P(Z) can be defined lower for higher z values; of course, it still has
to hold that ∑z p(z) = 1. A simple example for a non-uniform prior would be the
following:

p(z) ∝
1

z + 1
. (3.5)

Example 3.1 (A uniform prior). Let X denote the number of incorrect replies to the real
requests, i.e., X = Z−Y. Then, P(X|Y) simply equals P(Z−Y|Y). As eq. (3.4) indicates,
the probabilities of the values of X depend not only on the number of incorrect answers to
the challenges, but also on how many real requests (|M|) and challenges (|N|) have been
used. We write m for |M| and n for |N|. We first show examples for m = n = 10.
Figure 3.1 shows the probability mass functions (PMF) of different y for a uniform prior;
for instance, if 3 incorrect replies to the challenges are found (y = 3), the probability for also
having 3 incorrect replies to the real requests is around 0.2.

Example 3.2 (Changing n). Figure 3.2(a) shows the PMF for the case when five challenges
are used to estimate the correctness of ten real requests. Since fewer challenges are used,
the probability distributions are now less determined; for instance compare the function for
y = 2 with that from Figure 3.1. We show later how this characteristic can be expressed in
the form of the “risk”.

Example 3.3 (Changing the prior). For other priors, the shapes of the distributions change.
To give an example, Figure 3.2(b) shows the PMF for a prior as in eq. (3.5). Because high
numbers of incorrect replies are less probable, the probability distributions are skewed to the
left; this becomes evident when comparing n = 0 and n = 10, which are not symmetric with
each other.

32

3.1. Mechanism

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10

P
(x
|y
)

x

y=0
y=1
y=2
y=3
y=5
y=10

Figure 3.1.: Probability distributions for incorrect replies (m = n = 10, uniform prior,
PMF).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10

P
(x
|y
)

x

y=0
y=1
y=2
y=3
y=5

(a) m = 10, n = 5, uniform prior, PMF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10

P
(x
|y
)

x

y=0
y=1
y=2
y=3
y=5
y=10

(b) m = n = 10, skewed prior, PMF

Figure 3.2.: Probability distributions for incorrect replies.

Example 3.4 (A binomial prior). A special case occurs when the prior is chosen to be a
binomial distribution with parameter p:

p(z) =
(

m + n
z

)
pz(1− p)m+n+z . (3.6)

This distribution describes the probability of z successes in m + n independent Bernoulli
trials with success probability p each. Accordingly, we get m independent Bernoulli trials
to determine X, and n to determine Y. As a result, the posterior distributions of X and Y
are also binomial distributions with parameter p, independent of each other.1 In other words,
the knowledge of y does not tell us anything about X; and this holds independently of the

1We show this formally in Appendix A.1.

33

3.1. Mechanism

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

x

y=0
y=1
y=2
y=3
y=5
y=10

(3,0.8)

(2,0.91)
(3,0.87)

C
D
F y
(x
)

Figure 3.3.: Area of acceptance (m = n = 10, uniform prior, CDF).

number of challenges n. However, as we show in the next chapter, the knowledge of y is also
helpful in this case – it can be used to estimate the error rate of the binomial distribution.

3.1.3. Accept Decision

Probability distributions can be drawn in form of a cumulative distribution function
(CDF). Such a CDF is shown in Figure 3.3 for the same distribution as in Figure 3.1.

The function CDF(x) is defined as the sum of the PMF up to x, i.e., in our case
it is CDFy(x) = ∑x′≤x p(x′|y). The CDF shows how probable an upper bound of
incorrect replies to M is; for instance, if no incorrect replies to the challenges are
found (y = 0), there are with a probability around 0.91, not more than 2 errors
among the real requests. Furthermore, the CDF demonstrates how many incorrect
replies to the challenges a requester is willing to tolerate. For example, assume the
requester wants to accept M only if at most 3 incorrect replies can be expected with
probability greater than 0.8. Then he accepts only those y whose CDF falls inside
the gray “area of acceptance” in Figure 3.3; in our example this is y = 0 and y = 1.
In general, let imax denote the maximal number of incorrect replies to M that are
tolerated for a probability of at least pmin. Then, the requester accepts a set of replies
only if the following holds:

CDFy(imax) ≥ pmin . (3.7)

Note that also the expected value of the probability distribution of Z might be help-
ful for making certain decisions. If a certain number y of incorrect replies to the
challenges is found, the expected value of incorrect replies overall (Z) can be com-

34

3.2. Optimal Number of Challenges

puted based on eq. (3.2):

E(Z|y) = ∑
zi

zi · p(zi|y) . (3.8)

In conjunction with the corresponding standard deviation, the expected value could
alternatively be used to make the accept decision. However, in our case, we only
need a guarantee on the upper bound of the number of incorrect replies, for which
the CDF is more suitable.

3.1.4. Creation of Challenges

Under the assumption that challenges are indistinguishable from real requests, the
spot-checking mechanism gives probabilistic guarantees about the error rate of the
unverified replies. Since we take an abstract perspective in this thesis, we have not
proposed how such challenges may be created. In the scenario of volunteer com-
puting, the challenges can be precomputed on trusted hosts as proposed in [185],
or consist of simple checkers (see Sect. 2.3.4). In general, if an entity knows a set of
known facts {(Qi,Ri)}i, it can use the respective requests Qi as challenges. This is
safe from a privacy point of view, because the actual replies Ri are kept secret. If the
challenges are accepted responses to real requests, it is not completely certain that
they are correct. In this case, the probability computations described in the previous
section would have to be adapted to take this uncertainty into account. Similarly,
as we discuss later in Section 6.2, challenges can be a product of the application of
redundant requesting. Again, one has to account for the possibility of faulty chal-
lenges.

3.2. Optimal Number of Challenges

In this section, we show how to find an optimal number of challenges with respect
to: the costs of a challenge, and the risk of the estimate of z. We first show how
the risk of an estimate of z can be determined. The risk describes how incorrect the
estimate is expected to be. In our case, the risk depends mainly on the number of
challenges n. Simply put, the more challenges are used, the better the estimate can
be expected to be.

Let z′ denote the actual number of incorrect replies in a concrete application of
the procedure; m real requests and n challenges are used. If a certain number of
y incorrect replies to the challenges has been found, the estimate P(Z|y) can be
computed as shown in eq. (3.2). The error E of this estimate can be measured as

35

3.2. Optimal Number of Challenges

follows:2

E(m, n, y, z′) =
m+n

∑
zi=0

p(zi|y) · |zi − z′| . (3.9)

The domain of this error measure is [0, m]. Each z′ occurs according to the prior with
some probability p(z′), and so we can compute the risk of an estimate, that is, the
expected error in the estimate. For n challenges and m real the risk can be computed
as follows:

R(m, n) =∑
z′

p(z′)∑
y

p(y|z′) · E(m, n, y, z′) . (3.10)

Let the following cost parameters be given:

• cc = costs for one challenge,

• cr = costs for taking a risk of R(m, n) = 1.

In practice, the costs for one challenge have to reflect the costs for creating the chal-
lenge, and also things like the price that has to be paid to an information provider
for a reply to that challenge. Based on these costs, the overall cost function can be
defined:

C(m, n, cc, cr) = n · cc + R(m, n) · cr . (3.11)

To find the optimal number of challenges nopt for given m, cc and cr, the n has to be
chosen for which C(m, n, cc, cr) is minimal:

nopt = argmin
n

C(m, n, cc, cr) . (3.12)

Example 3.5 (Optimal n). For now, we consider the case of a uniform distribution for Z,
and use a uniform prior for the estimate. Figure 3.4(a) shows the risk for different numbers
of challenges n, when the number of real requests is m = 10. For n = 0, this shows how
great the risk of the estimate is if no challenge is used; in this case, the estimated probability
distribution is the prior, i.e., the (discrete) uniform distribution. Figure 3.4(b) illustrates
the resulting cost functions C(m, n, cc, cr) for different cost parameters. The exact costs are
shown in Table 3.1. In this table, the boxes mark the minima, and so the respective nopt can
be found in the corresponding row.

2Instead of the absolute value |zi − z′|, the square (zi − z′)2 can be used, as is done for the “mean
standard error” (MSE). The square has the property of more heavily penalizing incorrect esti-
mates. Whether this is desired or not is not discussed at this point.

36

3.3. Analysis

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16

n

Risk

(a) R(m, n) for m = 10.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16

n

Estimated Costs (cr=1)
Estimated Costs (cr=5)

Estimated Costs (cr=10)

(b) C(m, n, cc, cr) for m = 10 and cc = 1.

Figure 3.4.: Risk and costs.

3.3. Analysis

We analyze the mechanism in two ways: first, in terms of robustness against attacks,
and secondly in terms of efficiency. The accuracy and certainty of an estimate have
already been addressed in Section 3.2.

3.3.1. Security Analysis

In this section, we want first to analyze how an attacker could decide on an opti-
mal number of incorrect replies, which enables us to argue which prior is the most
robust. Secondly, we discuss the possibility of “intersection attacks” and propose a
countermeasure. Finally, we look into the issue of checking a source’s identity.

3.3.1.1. A Robust Prior

In the following analysis, we assign the attacker the ability to answer each re-
quest correctly, i.e., we assume that the attacker is what we call “competent” (see
Sect. 2.5.1). This allows the attacker to explicitly choose a certain number of incor-
rect replies. If an attacker does not have this ability, his attacks can only be less
effective. In addition to this, we assume a strong attacker that knows how many
challenges are used. If n were completely unknown to the attacker, he could not
reason about the optimal number of incorrect replies.

In the accept decision, the requester, or the “defender”, wants to have at most
imax incorrect replies to M with probability at least pmin. The requester will accept a
reply having y incorrect replies to the challenges only if eq. (3.7) holds. Otherwise,
the requester will reject the reply. Let us say that in the case of rejection, an attack
is not successful. Thus, an attacker tries to maximize the probability of his replies
being accepted. At the same time, the attacker tries to maximize the effectiveness of
his attack, i.e., the number of incorrect replies. To make a decision, the attacker needs

37

3.3. Analysis

Table 3.1.: Estimated costs C(m, n, cc, cr) for m = 10 and cc = 1.

n cr = 1 cr = 5 cr = 10

0 3.6363636 18.181818 36.363636
1 3.7424242 14.712121 28.424242
2 4.2985028 13.492514 24.985028
3 4.9989571 12.994785 22.989571
4 5.7666248 12.833124 21.666248
5 6.5783745 12.891872 20.783745
6 7.4221946 13.110973 20.221946
7 8.2905012 13.452506 19.905012
8 9.1780495 13.890248 19.780495
9 10.08103 14.405149 19.810298

10 10.996584 14.98292 19.96584
...

...
...

...

to know the probability that an attack with z incorrect replies will be successful. The
probability of getting z incorrect replies accepted depends on imax and pmin, and on
the prior used. As defined above, the two numbers imax and pmin determine for how
many incorrect replies to the challenges (y) the overall reply is still accepted – in
other words, how “tolerant” the requester is. Let AY denote the set of tolerated ys;
for example, if AY = {0, 1}, then the requester accepts the overall reply if he finds
zero or one incorrect replies to the challenges. The probability of an attack with z
incorrect replies being successful can then be computed as follows:

p(accepted|z) = ∑
y∈AY

p(y|z) . (3.13)

We can add up the probabilities for different ys, because they are mutually exclusive
events. How to compute P(Y|Z) is shown above in eq. (3.4).

Example 3.6 (Success probabilities). Consider the case of imax = 2, pmin = 0.9 and
m = n = 10. Then a request is already discarded if 1 incorrect reply to the challenges is
found, as can be seen in Figure 3.3 (CDF(2) = 0.9097744 for n = 0). Therefore, AY = {0},
and the attacker gets the following probabilities:

P(accepted|Z) = P(Y = 0|Z) . (3.14)

Table 3.2 shows the resulting values. If, for instance, the attacker uses only one incorrect
reply, the attack is successful with probability 0.5. This is because the probability of this
incorrect reply falling on a challenge is 10/20 = 0.5. Note that P(accepted|Z) is not
normalized, i.e., ∑z p(accepted|z) 6= 1.

38

3.3. Analysis

Table 3.2.: Probabilities of successful attacks (m = n = 10).

z p(accepted|z)
0 1
1 0.5
2 0.2368421
3 0.1052632
4 0.0433437
5 0.0162539
6 0.0054180
7 0.0015480
8 0.0003572
9 0.0000595

10 0.0000054
...

...
20 0

We can describe an attack strategy as a probability distribution P(Z). It is not
evident what attack strategy a rational attacker would probably choose. This is
because we do not know what the attacker’s preference is: to maximize the success
probability (p(accepted|z)) or to maximize the number of incorrect replies (z). In
the first case, the attacker would tend to return fewer incorrect replies, because then
the success probability is higher; in the second case, he would tend to return more
incorrect replies. Now, if we use a prior skewed to the right, we will overestimate
the actual error rate in case of the first type of attacker; if we use a prior skewed to
the left, we will underestimate the error rate in the second case. Hence, we argue
that a uniform prior should be used because it accounts equally for the different
attack strategies. One could argue that a prior skewed to the right would motivate
an attacker to return fewer incorrect replies, because fewer errors would lead to
a higher error rate estimate; but especially when dealing with larger numbers of
trustworthy sources with small error rates, which should be the usual case, one
would very often make large estimation errors.

3.3.1.2. Intersection Attacks

For the repeated application of the proposed mechanism, the choice of the challenges
has to be made reasonably. An imprudent choice of challenges can give attackers the
possibility of intersecting request sets and so identifying challenges. This violates
our assumption of indistinguishable challenges: Attackers could selectively make
correct and incorrect replies, which would cause the requester’s estimate of Z to be
wrong. To give an example, consider an attacker that replies correctly to a whole set
of requests M∪N. The attacker can be sure that the requester will accept the replies.

39

3.3. Analysis

If one of the requests in M ∪ N appears again later, either to the same information
provider or to another one who colludes, the provider can identify the request as
a challenge. We call attacks of this kind “intersection attacks”. In our case, we can
make these attacks impossible. Consider two cases:

Case 1: A set of requests M∪N is rejected, because y is too high. Consequently, the
requester wants to request M again.

Case 2: A set of real requests M is requested for the first time.

In the first case, the requester should use the same challenges N again. In the second
case, the requester should use challenges that have never been used before. It is easy
to see that these two rules ensure that for any two sets of requests R1 and R2 the
following holds:

(R1 ∩ R2 = ∅) ∨ (R1 = R2) . (3.15)

In this way, attackers cannot learn anything about the challenges from intersecting
different sets of requests.

3.3.1.3. Identity

One big advantage of the mechanism is clearly that it can also be used if the identity
of an information source cannot be checked. As long as the correctness of the replies
is statistically independent, the mechanism can be applied to any set of information.
On the other hand, the mechanism is necessarily limited in the sense that it does not
learn about information providers. In Chapter 4, we therefore equip the mechanism
with learning functionality.

3.3.2. Efficiency

We analyze the efficiency of the proposed mechanism in terms of computational
complexity and overhead caused by the challenges.

3.3.2.1. Computational Complexity

The computational complexity of the spot-checking mechanism is in O(m + n),
which is determined by the computation of eq. (3.3). The decision as to whether
to accept a set of replies is only one comparison (eq. (3.7)). The complexity can be
reduced in practice: every estimate can be precomputed for different m, n and y,
which only leaves the challenges to be checked at runtime (O(n)). This is an upper
bound, because the comparisons can be stopped as soon as it is clear that imax cannot
be fulfilled with probability pmin (as similarly proposed in [60]).

40

3.4. Runtime Evaluation and Adaptation of an IDS

3.3.2.2. Challenge Overhead

With spot-checking, the requester can adjust the overhead of verification continu-
ously. If the proposed mechanism is used in isolation, its overhead can be measured
as the ratio of all requests to the number of results that matter:

Overhead(spot-checking) =
m + n

m
. (3.16)

In the redundant requesting approach, which we discuss later in Chapter 5, the re-
quester has to choose a positive integer k > 1 as redundancy level (usually k = 2
or k = 3 [11]). To give our spot-checking mechanism the same overhead as redun-
dancy with k = 2, the same number of challenges and real requests can be used
(n/m = 1). Nevertheless, it has to be kept in mind that spot-checking entails a risk
of misestimation.

3.4. Runtime Evaluation and Adaptation of an Intrusion
Detection System

In this section, we show how spot-checking with challenges can be applied to a
concrete system for network intrusion detection. In contrast to the basic spot-checking
with challenges introduced above, we will now use challenges to particularly to
assess the accuracy of an information source – and not the error rate of the replies.
In the remaining part of this chapter, the information sources are assumed to be
under our control and do not try to fool our mechanism; in fact, they do “the best
they can”. In the next chapter, where we deal with assessing the trustworthiness of
a source, we focus on the possibility of malicious sources that use strategies in order
to go undetected. Thus, for now, we are not dealing with the trustworthiness of a
possibly malicious source, but with the accuracy of a honest source.

Intrusion Detection with CAMNEP The input to a network intrusion detection sys-
tem (IDS) is information about the packets entering the network under surveillance.
The aim of the system is to report packets that provide evidence for an ongoing
attack on the network. The IDS that we consider here is the CAMNEP IDS [120] de-
veloped at the Czech Technical University in Prague. CAMNEP gets as input network
flows, which represent groups of packets using the same protocol (TCP/UDP/ICMP)
and the same source and destination (determined by IP addresses and ports). The
flows contain also information such as the number of packets, bytes, etc. For each
flow, the system outputs a value in [0, 1] that estimates the likelihood of the flow
being part of an attack; we call these values attack scores. The closer the attack score
is to 1, the more legitimate the flow is thought to be; 0 represents the most suspect
flows. To present the results to a network administrator, thresholds are applied to
decide when to raise an alarm.

41

3.4. Runtime Evaluation and Adaptation of an IDS

challenge database

Enhanced
anomaly
detection
mechanism

1

Enhanced
anomaly
detection
mechanism

K...

network flows

collaboration

Aggregator kAggregator 1 ...
selected

evaluations evaluations

C
A

M
N

E
P

 I
D

S

INPUT
......

insert challenges

OUTPUT

check evaluation
 of challenges

Figure 3.5.: The CAMNEP IDS with runtime evaluation.

Figure 3.5 illustrates the CAMNEP system together with the extension for eval-
uation and adaptation at runtime. The core CAMNEP system consists of a set of
collaborating components, each of which deploys a different algorithm for anomaly
detection. Anomaly detection aims to learn what observations are “normal”, and then
to report abnormal observations. This idea can be used in network scenarios where
legitimate flows make up the great majority of the traffic, and so attacks often be-
long to the abnormal traffic. In the literature, many different approaches to anomaly
detection have been proposed for network intrusion detection [93]. The aim of com-
bining several anomaly detection approaches is to outweigh the weaknesses3 of the
different approaches. This is also motivated by the success of ensemble techniques
for machine learning, such as bagging [21] and boosting [50]; in these techniques sev-
eral instances of a classifier are trained on different subsets of the training set, and
then the classifications of the different instances are aggregated. The output of the
different anomaly components of CAMNEP are aggregated by the k “aggregators”
in different ways (see [120] for details). One of the aggregators is selected and pro-
vides the final output of the system, namely the attack scores for the current flows.
To use the terms defined in this thesis’ introduction: The aggregators act as infor-
mation sources, the network flows are requests (Q), and the attack scores are the
replies.4

3Lazarevic et al. [93] have found that the anomaly detection schemes considered are especially
suitable to detect certain attacks.

4Only when a threshold is applied to an attack score, one gets a response R, for which it can be

42

3.4. Runtime Evaluation and Adaptation of an IDS

Selecting Aggregators The CAMNEP system is continually learning, and so the
accuracy of the different aggregators is very likely to change over time. Also, some
aggregators will be more accurate concerning certain attacks than others. Therefore,
it has to be decided at runtime what the best aggregator currently is. To this end, we
propose to add prepared challenges to the regular network flows (see Figure 3.5).
These challenges, which are stored in a database, are flows that are known to be
either attack flows or legitimate flows. Each aggregator can then be evaluated by
checking how well it processed the challenge flows; eventually, the most accurate
aggregator is selected. A big advantage of the selection of different aggregators
at runtime is that it is hard for attackers to predict the behavior of the IDS. The
benefit of using challenges is that by a deliberate choice of challenges, the system
can be directed to attach more importance to specific attacks, as we show later in
Section 3.4.3; before this, we show how the aggregators are evaluated (Sect. 3.4.1),
and then how a reasonable number of challenges can be determined (Sect. 3.4.2).

Intrusion Detection Networks The procedure proposed in the following addresses
the case where the anomaly detection mechanisms are run in a trusted environment.
This is commonly the case, which means that we are dealing with trustworthy but
possibly unreliable information sources. However, in “intrusion detection networks”
(IDN), several IDS are distributed over the Internet and act as collaborating peers
and exchange information about intrusions. In this case, peers can be untrustworthy
information sources. Our approach can be applied in this case: Malicious challenges
can be sent to other peers in order to test whether these peers actually raise an alarm.
However, since an alarm is only raised for malicious challenges, the peers can be
rated only on these. For information on related research, the reader is referred to
[76, 42, 56, 57].

3.4.1. Evaluation of Aggregators

The challenge database contains flows that belong to known attacks (we call them
malicious), and flows that are known to be legitimate. Challenges from both types
are added to the input of CAMNEP. After the challenges have been processed, each
aggregator can be evaluated. The performance of an aggregator for the malicious
and the legitimate challenges is measured separately. Let α1, . . . , αn be the attack
scores that a certain aggregator assigns to the malicious challenges. The sample mean

checked whether (Q,R) is a fact. However, because information is lost by applying a threshold,
we consider the real-valued attack scores in the following.

43

3.4. Runtime Evaluation and Adaptation of an IDS

and sample standard deviation of the attack scores for malicious challenges are then:

ᾱ =
1
n ∑

i
αi , (3.17)

sα =

√
1

n− 1 ∑
i
(αi − ᾱ)2 . (3.18)

Analogously, let λ1, . . . , λ1 be the attack scores that the same aggregator assigns to
the legitimate challenges; sample mean and sample standard deviation are:

λ̄ =
1
n ∑

i
λi , (3.19)

sλ =

√
1

n− 1 ∑
i
(λi − λ̄)2 . (3.20)

The sample means ᾱ and λ̄ are unbiased estimators of the respective real means
µα and µλ of the underlying distributions (see [107, p. 278]); this means that their
expected values equal the real means (E(ᾱ) = µα and E(λ̄) = µλ). To make the
sample standard deviations unbiased estimators as well, they are computed with

1
n−1 instead of 1

n (see [141, p. 158]).
As mentioned before, an attack score close to 0 marks attacks; a score close to 1

marks legitimate traffic. So, for a very accurate aggregator, ᾱ is close to 0, λ̄ is close
to 1 and sα and sλ are small. Rewarding a high accuracy, we give an aggregator the
following intermediate rating (higher values are better):

ri =
λ̄− ᾱ

sλ + sα
. (3.21)

We continuously evaluate aggregators in batches of five minutes each:5 index i of
ri counts the batches, and the highest i marks the most recent batch. Based on a
number of batches, we compute the overall rating for an aggregator as follows:

r = ∑
i

wi · ri , (3.22)

where wi are weights that determine how much older ratings should be considered;
the weights are normalized so that it holds: ∑i wi = 1. In the current implementa-
tion, we use weights that decrease exponentially and discard all ratings older than 5
batches. Finally, the aggregator with the highest current rating r provides the system
output for the time of the next batch.

5This is a common time interval used in network flow processing.

44

3.4. Runtime Evaluation and Adaptation of an IDS

3.4.2. Adaptive Number of Challenges

In this section we show what a reasonable number of challenges is. Since attack
scores are real-valued, we have to take a different approach from that of Section 3.2.

We must meet two requirements in determining the number of challenges. First,
enough challenges should be used to make the evaluation of the aggregators mean-
ingful. Secondly, as few challenges as possible should be used because the challenges
have an impact on the learning inside of CAMNEP; e.g., if too many challenges
mimicking a certain attack are used, the anomaly detection mechanisms will start
to consider these flows as normal traffic. To account for this, we impose an upper
bound nmax on the number of challenges.

3.4.2.1. Applying Margins of Error

We can give guarantees about the accuracy of the aggregator ratings by using “mar-
gins of error”. A margin of error is a bound that is not violated with a certain
confidence level C, which is simply a probability. In Appendix B, we show how to
compute the margin of error for means and standard deviations. When applying
margins of error, we have to satisfy two preconditions: First, the challenges have
to be randomly picked from the challenge database, and secondly, the challenge
database has to be representative of the whole diversity of network flows.

In the following we write ∆L for a left margin of error for a mean (or a standard
deviation); a margin of error ∆L computed for an estimated mean µ̄ states that the
actual mean µ is greater than µ̄− ∆L with probability C. In the same way, there is a
right margin of error ∆R; for a mean this states that the actual mean µ is guaranteed
to be smaller than µ + ∆R. We use ∆L and ∆R to denote margins of error for both
means and standard deviations; the context makes clear which is meant.

Recall that from the latest batch we know for each aggregator the two means ᾱ
and λ̄, and the respective standard deviations sα and sλ; these are based on an equal
number of malicious (α) and legitimate (λ) challenges. Given this, we can order the
aggregators (a) based on their most recent ratings resulting from eq. (3.21):

a1 ≥ a2 ≥ · · · ≥ ak . (3.23)

We can make sure that the ratings from the next batch do not reverse this ordering
by chance. To this end, we choose for every pair of aggregators (ai, ai+1) a number
of challenges that guarantees a margin of error that ensures the order. Let us look at
aggregators a1 and a2, where a1 has currently the better rating. Then for the latest
batch i it holds (indices 1 and 2 identify the two aggregators):

ri,1 =
λ̄1 − ᾱ1

sλ1 + sα1

≥ λ̄2 − ᾱ2

sλ2 + sα2

= ri,2 . (3.24)

Considering these estimates as the best predictions for the performance on the next

45

3.4. Runtime Evaluation and Adaptation of an IDS

batch, we can apply the error margins to each estimate as follows:

lower bound︷ ︸︸ ︷
(λ̄1 − ∆L)− (ᾱ1 + ∆R)

(sλ1 + ∆R) + (sα1 + ∆R)︸ ︷︷ ︸
upper bound

≥

upper bound︷ ︸︸ ︷
(λ̄2 + ∆R)− (ᾱ2 − ∆L)

(sλ2 − ∆L) + (sα2 − ∆L)︸ ︷︷ ︸
lower bound

. (3.25)

The margins of error are chosen in such a way that, for an increasing number of
challenges n, the lower bounds are strictly increasing, and the upper bounds are
strictly decreasing. Because the error margins converge to zero for n → ∞, there
must be an n for which the inequality holds, unless we have ri,1 = ri,2. In the
latter case we choose nmax. Otherwise we start with a number of challenges n = 2,
compute this formula for increasing n, and choose the first n for which the inequality
holds; if this n is larger than nmax, we choose nmax instead.

We compute such a number of challenges for every pair of consecutive aggrega-
tors; we write ni for the number of challenges determined for the pair of aggregators
(ai, ai+1). Because we are testing each aggregator with the challenges inserted to the
whole system, we select as overall number of challenges:

2 ·max
i<k

(ni) . (3.26)

The factor 2 accounts for the fact that we need n malicious and n legitimate flows.

3.4.2.2. Computational Complexity

We showed in Section B that each margin of error can be computed in O(1), and
so the computation of eq. (3.25) for one n is also in O(1). Additionally, to gain per-
formance, we apply the error margins in eq. (3.25) separately, instead of computing
overall error margins for the two terms (on the left and right side). In the latter
case, we would have to solve 2 ∑k−1

i=1 ni integrals of complex probability distributions
at runtime, as shown in Section B. However, the overall margins of error would be
narrower, and so our approach sacrifices some precision for performance. The draw-
back of the loss of precision is that we probably overestimate the required number
of challenges. On the other hand, this way we get an even higher confidence that
the inequality will not be violated by chance.

In eq. (3.26), we considered all aggregators. To reduce complexity for the de-
termination of n, one can bound the number of considered aggregators to the first
kmax ≤ k aggregators, so that only kmax many nis have to be computed. The rationale
for the restriction of k is that for the system output, it only matters which aggregator
is at the first position, and aggregators with very poor ratings do not compete with
the most accurate ones. For the next batch, every aggregator is then evaluated based
on the following number of challenges:

2 · max
i<kmax

(ni) . (3.27)

46

3.4. Runtime Evaluation and Adaptation of an IDS

For each pair of consecutive aggregators, eq. (3.25) has to be computed up to nmax
times, which gives an overall complexity of O(kmax · nmax).

3.4.3. Threat-Model Driven Challenge Selection

The challenges that are used to test the aggregators in CAMNEP are network flows
that either are malicious, i.e., belong to an attack, or are part of legitimate traffic.
In the previous section, we assumed that both malicious and legitimate challenges
are picked randomly from the challenge database. Alternatively, we can select the
malicious challenges in a way so that they better represent more harmful attacks.
As a result, the aggregator that is chosen performs best on these selected challenges,
and so the IDS is directed at detecting the harmful attacks in particular.

First of all, we group attack flows into t different attack classes A1, . . . , At; one class
contains horizontal scans, while another class contains buffer overflow attempts, etc.
Attacks from the same attack class share certain characteristics, and so an anomaly
detection mechanism that is able to detect one attack from a class will be likely to
detect other attacks from the same class. Also, the expected damage of attacks be-
longing to the same class is similar; let D(Ai) denote the expected damage of an
attack from class Ai. Our aim is to make the detection of more damaging attacks
CAMNEP’s highest priority. So, if for instance an attack from A1 is twice as damag-
ing as an attack from A2, then it is also twice as important to detect an attack from
A1. To account for this, we use a number of malicious challenges that is proportional
to the expected damage of the class they belong to. As a consequence, we get a more
accurate assessment of an aggregator’s performance for the damaging attacks, and
give this accuracy a higher weight in the aggregator’s rating in eq. (3.21).

It remains to show how to determine the damage of an attack class. To this end,
we make use of “attack trees”; an attack tree structures the ways in which attackers
can realize a specific threat. After assigning expected damages to concrete threats,
we can derive the damage of an attack class. In the following, we first explain in
more detail what an attack tree is. We will then show how the representation of an
attack tree can be minimized. Finally, we show how for a given set of attack trees,
and associated expected damages, the damage of the different attack classes can be
determined.

3.4.3.1. Attack Trees

There are often several alternative ways in which an attacker can realize an attack.
An attack tree structures these different ways. As described in [106], an attack tree is
composed of AND and OR branches. Figure 3.6 illustrates the structure of such an
attack tree. In this figure, the branch with an additional arc depicts an AND branch;
all other branches are OR branches. The root constitutes the threat that an attacker
can try to implement, for instance a “server takeover”. To reach the root, an attacker
needs to carry out a number of attacks represented by the leafs of the tree, and so

47

3.4. Runtime Evaluation and Adaptation of an IDS

Threat

Attack a1 Subgoal 1

Subgoal 2

Attack a3 Attack a4

Attack a2

Figure 3.6.: Example attack tree.

Subgoal 1

Subgoal 2

Attack a3 Attack a2

Subgoal 3

Attack a4 Attack a2

Figure 3.7.: Subtree.

moves from the bottom to the top. In the case of AND branches, an attacker has to
reach all children of a node to reach the node. In the case of OR branches, it suffices
to reach one of the children of a node to reach the node. For example, in attack tree
in Figure 3.6, an attacker can reach the subgoal 2 by carrying out attack a3, then can
reach subgoal 1, by additionally carrying out attack a2, and by reaching subgoal 1
has accomplished the threat.

Minimal Representation of Attack Trees The attack tree in Figure 3.6 could be
drawn in different ways, each describing the same set of possible attacks; for exam-
ple, “Subgoal 1” could be replaced by the subtree shown in Figure 3.7. In fact, the
interpretation of AND and OR branches as boolean operators makes clear how equiva-
lent attack trees can be constructed. Based on the boolean interpretation, we show in
the following how to find the minimal and unique representation of an attack tree.
To this end an attack tree is translated into a propositional logic formula, which is
minimized with traditional techniques.

An attack tree T can be transformed into a propositional logic formula as follows.
Initially, the formula consists only of the root of the tree. We now successively go
through the tree, from the top to the bottom. At each step, we replace nodes by their
children, connecting them with the appropriate logic operation (∨ for OR branches,
∧ for AND branches). Parentheses are used to group the children together. When
there is no node left that can be replaced, we are done. For the example tree shown

48

3.4. Runtime Evaluation and Adaptation of an IDS

in Figure 3.6 this process is as follows:

1.) “threat” , (3.28)
2.) (a1) ∨ (“subgoal 1”) , (3.29)
3.) (a1) ∨ ((“subgoal 2”) ∧ (a2)) , (3.30)
4.) (a1) ∨ (((a3) ∨ (a4)) ∧ (a2)) . (3.31)

A formula is in Disjunctive Normal Form (DNF) iff it is a disjunction of conjunctive
clauses. A formula is called “canonical” if all clauses contain all variables. We can
bring any formula into canonical DNF by building a truth table that contains all
variables, and using all rows that evaluate to true as the clauses. For our running
example that results in:

(a1 ∧ a2 ∧ a3 ∧ a4) (3.32)
∨(a1 ∧ a2 ∧ a3 ∧ ¬a4) (3.33)
∨(a1 ∧ a2 ∧ ¬a3 ∧ a4) (3.34)
∨ . . . (3.35)

However, there is much redundancy in the formula. For example, lines 3.32 and 3.33
together are logically equivalent to a1∧ a2∧ a3. To minimize the formula and remove
all redundancy, we apply the Quine-McCluskey algorithm [115]. For the attack tree
in Figure 3.6, we get:

(a1) ∨ (a3 ∧ a2) ∨ (a4 ∧ a2) . (3.36)

Having an attack tree in such a minimal DNF, we can say that an attacker realizes
the threat if he manages to make at least one clause true.

A formula in DNF can be represented as a set of clauses {C1, C2, . . . } where each
clause Ci is a finite set of attacks. We write F(T) for the minimal DNF formula in set
notation that corresponds to attack tree T. For example, attack tree from Figure 3.6
is then:

F(T) = {{a1}, {a2, a3}, {a2, a4}} . (3.37)

Alternative Minimization Technique A different technique for minimizing attack
trees can be found in [100]; in their approach, the authors define transformations di-
rectly on attack trees, whereas our approach works with transformations on propo-
sitional logic formulae. Their approach is not equivalent to ours. In their approach,
the tree corresponding to (a1) ∨ (a1 ∧ a2) is for instance not further simplified (they
do not use “absorption laws”), while in our approach it is minimized to a1. As a
consequence, the procedure that we propose below in Section 3.4.3.2, would in many
cases yield different results for an attack tree minimized with their and our method.
Thus, their approach cannot be used here.

49

3.4. Runtime Evaluation and Adaptation of an IDS

Attack Graphs A more general approach to model threats is “attack graphs” (see
[137]). In this approach, a threat is represented by a graph, analogously to attack
trees. Attack graphs that do not contain cycles can be represented in form of attack
trees (we allow each attack to appear several times in a tree). Thus, in these cases, our
procedure of threat-model driven challenge selection works also for attack graphs.
If an attack graph contains cycles that cannot be removed, the attack graph repre-
sentation is more powerful and cannot be captured by an attack tree. For this case,
[102, 135] propose alternative techniques that use the PageRank algorithm [22] to
measure the threat posed by single attacks.

3.4.3.2. Expected Damage for Attack Classes

Let a set of attack trees T = {T1, . . . , Tn} be given. In addition to this, the associated
expected damages D(T1), . . . , D(Tn) have to be defined manually. We now want to
know what the overall expected damage for an attack class Ai is. In other words, we
want to transfer the damage that has been associated with an attack tree, and so is
also associated with the attacks in this tree, via these attacks to the attack classes.

In a first step, we determine how important an attack ai is in realizing a threat
represented by attack tree Tj. Consider the following points:

• For making a chosen clause true, an attacker needs to make true all attacks in
this clause. Thus, all attacks belonging to the same clause are equally impor-
tant.

• An attacker realizes a threat corresponding to Ti if he satisfies at least one
clause in formula F(Ti). Hence, any satisfied clause in F(Ti) causes damage
D(Ti), and so all clauses within a formula are equally important.

Since we are dealing with minimized formulas, these two requirements are easy to
meet – we can compute the “importance” of an attack ai within a tree Tj as follows:

I(ai, Tj)
def
=

1
|F(Tj)| ∑

Ck∈F(Tj),
with ai∈Ck

1
|Ck|

, (3.38)

where |Ck| is the number of attacks in clause Ck, and |F(Tj)| is the number of clauses
in the formula Tj. The reader can easily verify that, if attack ai is not in Tj, then its
importance within the tree is zero; also, the sum of the importances of all attacks in
the tree is 1 (see App. A.2 for a proof).

In a second step, we want to know which damage can be attributed to a single
attack. The higher the expected damage of an attack tree is, the higher is the expected
damage of any single attack in the tree. So, we can weight the importance of an
attack ai within a tree Tj with the damage of the respective threat D(Tj). We get the
estimated damage for a single attack ai by summing over all attack trees:

D(ai)
def
= ∑

Tk∈T
D(Tk) · I(ai, Tk) . (3.39)

50

3.4. Runtime Evaluation and Adaptation of an IDS

Because the importances of all attacks within a tree add up to 1 (see above), the sum
of the damages of all attacks equals the overall damage of all threats (see App. A.2
for a proof). This property ensures that we do not add or leave out any damage at
any point in our process.

Finally, we can compute the damage of a whole attack class Ai by adding the
damage of all attacks in this class:

D(Ai)
def
= ∑

aj∈Ai

D(aj) . (3.40)

Let n be the overall number of malicious challenges used. We then use a number
of malicious challenges from each attack class Ai that is proportional to its damage
D(Ai):

nAi =
D(Ai)

∑j D(Aj)
· n . (3.41)

In Appendix C, an example illustrates the whole process of deriving the damage of
attack classes.

3.4.3.3. Applicability of Error Margins

Note that by selectively picking challenges, challenges are no longer randomly picked
from the whole set of challenges, but only within each attack class. However, in the
previous section, we made the assumption of randomly-picked challenges: Only
if we globally select challenges randomly, can we apply the margins of error as
described in Section 3.4.2.1. One approach to address this issue is to compute an ag-
gregator rating r for each attack class separately. As a consequence, a new ordering
between the aggregators has to be defined that accounts for the different ratings; the
easiest approach would be to compute a weighted average of all ratings, where the
weights are the expected damages of the respective attack classes.

Alternatively, one can pick the challenges randomly from the whole database, but
compute the mean attack score for the malicious flows ᾱ as a weighted average [98,
p. 250]:

ᾱ′ =
∑i D(A(αi)) · αi

∑j D(Aj)
, (3.42)

where A(αi) denotes the attack class to which attack αi belongs. The weighted stan-
dard deviation can be computed as follows [98, p. 251]:

s′α =

√
∑i D(A(αi)) · (αi − ᾱ′)2

1−∑j D(A(αj))
. (3.43)

The aggregator rating in eq. (3.21) can be then computed with ᾱ′ and s′α. However,
for the computation of the number of challenges in Section 3.4.2, the common mean

51

3.4. Runtime Evaluation and Adaptation of an IDS

and standard deviations have to be used. This allows us to combine the approach
for computing a good number of challenges with the approach for applying higher
weight to important attack classes. The disadvantage is that there is the possibility,
because the challenges are picked randomly from the whole set, that very few or no
challenges are selected from the most important attack classes, and thus the accuracy
in these cases would drop.

3.4.4. Evaluation

In this section we describe experiments that tested the performance of CAMNEP
with the approaches for adapting the number and the composition of challenges
at runtime. The experiments have been conducted by members of the Agent Tech-
nology Center at the Czech Technical University, Prague, under the lead of Martin
Rehák. For the experiments, five different anomaly detection mechanisms [178, 91,
90, 44, 142] were used. The resulting outputs were aggregated by 30 different ag-
gregators using weighted or order-weighted averaging, or a combination of both. In
weighted averaging, the outputs of the different anomaly components are weighted
more or less strongly. In order-weighted averaging the values are weighted in re-
spect to their ordering, e.g., the first and last values in the ordering are weighted
more heavily than values in the middle.

The traffic trace on which the experiments were run had been recorded on a uni-
versity network and had a length of almost 350 minutes. The flows in the trace were
manually labeled as malicious or legitimate. The malicious flows covered mainly
scanning and peer-to-peer activities, bot propagation and brute force attacks on
passwords. The recording was made in batches of five minutes each. Each batch
contains up to ca. 80, 000 flows, with roughly ten percent being malicious. In the
following, we use the terms false positives (FP), false negatives (FN) and true positives
(TP) (see Sect. 2.5.2 for an explanation); these terms imply that a threshold, which
decides when to raise an alarm, has been applied to the final output. For more
details on how to choose these thresholds we refer to [120].

Adaptive Number of Challenges Figure 3.9(a) shows the number of challenges fluc-
tuating over time. For the first three batches (or 15 minutes), we fixed the number of
challenges, because the anomaly detection mechanisms require some time to initial-
ize. After this, the number of challenges increased until minute 70 where it peaked,
thereafter fluctuating around a central value. One can observe two further increases
after minute 150 and minute 300. When comparing these observations to Figure 3.8,
which shows the performance of the aggregators, an increase in the diversity of the
performances can be observed in these areas. Besides this, the figure shows that a
peak in the number of false positives from all aggregators at minute 100 could not
be avoided. It can be argued that at this point in time the enhanced anomaly detec-
tion mechanisms are not yet sufficiently trained. A big peak later in time, at minute

52

3.4. Runtime Evaluation and Adaptation of an IDS

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300 350

nu
m

be
r

of
 f

al
se

 p
os

iti
ve

s

time (min.)

Figure 3.8.: False positives of all aggregators (thin lines) and that selected (thick line).

0

10

20

30

40

50

0 50 100 150 200 250 300 350

n

time (min.)

(a) number of challenges

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350

ID
 o

f
se

le
ct

ed
 a

gg
re

ga
to

r

time (min.)

(b) selected aggregators

Figure 3.9.: Evolution of CAMNEP with adaptation at runtime.

190, is successfully avoided by the selected aggregators. Figure 3.9(b) shows which
aggregator was selected at what time. It is interesting to see that the system mainly
selected aggregators from a smaller subset of aggregators, and especially aggregators
23 and 24, which used a combination of weighted- and order-weighted averaging.

An overview of the results is given in Table 3.3. The table shows the number of
unique source IP addresses for the classes FN and FP respectively, averaged over
the different batches of five minutes each. We can see that the proposed aggregator
selection at runtime clearly outperformed the trivial aggregation function, the arith-
metic average; but also all other aggregators performed worse either in terms of FP
or FN. The performances of the aggregator with the minimum number of FP and the
best aggregator came close to the performance of the aggregator selection at run-

53

3.4. Runtime Evaluation and Adaptation of an IDS

Table 3.3.: Performance for different fixed aggregators, and the runtime adaptation.

System FN (Avg., #sources) FP (Avg., #sources)

Arithmetic average (on anom. det.) 14.7 12.5

Arithmetic average (on aggreg.) 13.1 24.3

Aggregator with min. #FP 14.5 5.3

Aggregator with min. #FN 9.8 125.2

Best aggregator 13.7 5.7

Aggregator selection at runtime 14.0 3.1

server takeover

a1 exploit

buffer overflow

a2 a3

pwd. brute force

a4 a5

Attack Description Att. class

a1 horizontal scan A1
a2 fingerprinting A2
a3 buffer overflow A3
a4 SSH pwd. bf. request A4
a5 SSH pwd. bf. response A4

Figure 3.10.: Server compromise attack tree with attack descriptions.

time. However, what these best aggregators were, could only be known after the
system was run. Therefore, these represent only best case performances for a fixed
aggregator. The better performance can probably be explained by the fact that peaks
like those of Figure 3.8 can sometimes be avoided. The results suggest that our ap-
proach is able to combine the diversity of the different anomaly detection methods
in a beneficial way.

Threat-Model Driven Challenge Selection To test the approach of threat-model
driven challenge selection, the attack tree shown in Figure 3.10 was used to deter-
mine the composition of challenges. Appendix C shows how the damage for the
respective attack classes can be computed in this case.

In a subsequent step, standard security tools such as nmap or metasploit were
used to attack the network in order to realize the corresponding threat. The attacks
were repeated several times with changes in speed, tool settings and intensity. The
following results suggest that the system selected good aggregation functions, i.e.,
those that were able to detect various stages of server compromise attacks. Table 3.4
shows the deviation of the attack scores of the malicious flows from the average

54

3.4. Runtime Evaluation and Adaptation of an IDS

Table 3.4.: Attack score deviations for request/response traffic.

Attack All challenges Selected challenges

Horizontal scan 1.1/-0.2 1.4/0.0

Vertical scan 1.2/-0.2 1.4/0.3

Fingerprinting 1.5/1.2 1.9/1.6

SSH pwd. brute force -0.2/0.6 0.2/1.2

Buffer overflow -0.2/0.1 0.2/0.0

Table 3.5.: Effects of a threat-model driven challenge selection.

Result #FN (Avg.) #FP (Avg.) #TP (Avg.)

Random challenge picking 39 201 146

Selective challenge picking 37 249 161

attack score as a multiple of the standard deviation of all attack scores: Higher
values are better, and negative values indicate that the flows were thought to be
less malicious than the average. The attack scores attributed to horizontal scans,
fingerprinting and vertical scans have improved considerably, making them far more
likely to be detected. The most dramatic change of behavior was related to the
brute force password breaking attempts. These were undetectable with the baseline
system configuration, but became detectable with the threat-model driven system
adaptation. Buffer overflow attacks still could not be detected, however: anomaly
detection methods are generally not good at detecting this kind of attack because of
the low volume of traffic involved.

The results shown in Table 3.5 suggest that the overall accuracy of the system
suffered somewhat from the adaptation. The higher number of false positives is
probably caused by the system’s focus on the server takeover threat, which was
uncommon in the traffic trace. Still, the number of false negatives did not change
significantly, and the number of true positives slightly increased.

55

4. Modeling Trust in Information
Sources

In this chapter, we show how the trustworthiness of an information source can be assessed in
cases where acquired information cannot be verified directly. These assessments can be used
as criteria for making decisions about which information provider to select next. In addition
to this, acting as an extension to the spot-checking mechanism from the previous chapter, it
helps to reduce the overhead of spot-checking: The more one trusts, the less one has to check.
Since the trust model has several parameters, we also show how these may systematically be
configured.

Organization In Section 4.1, we investigate general challenges and limitations for
computationally modeling trust. We then study specifics of trust in the context of
information acquisition, and provide a definition. In Section 4.2, we propose and
evaluate a concrete evidence-based trust model that assesses the trustworthiness of
information sources. Finally, we show in Section 4.3 how to find optimal configura-
tions of evidence-based trust models, and provide a proof of concept by applying it
to the proposed trust model.

Terminology Following the common terminology, we call an entity that trusts “trustor”,
and an entity that is trusted “trustee”.

This chapter is related to [150, 151, 149] and [145, 144, 148].

4.1. Computational Trust Modeling

In the following, we derive a definition of trust, and discuss the problems we face
when formalizing it as a computational concept. We then examine the specifics of
trust in information sources.

4.1.1. Trust

Trust plays an important role in the social behavior of humans. In short, it helps a
human to make decisions about relying on other humans. When a trustor relies on a
trustee, he has certain expectations about the trustee’s behavior. In market scenarios,
these expectations can for instance be defined in form of a contract. Then, the trustee

56

4.1. Computational Trust Modeling

either meets the expectations, which we describe as “the trustee succeeds”, or he
disappoints the trustor, described as “the trustee fails”. When a trustor has decided
to rely on a certain trustee, and has asked him to perform some task, the trustee will
do either of the following:1

• accept, and succeed

• accept, but fail

• reject

We can see that trust concerns the belief that someone will succeed under the condi-
tion that he will accept. If someone rejects a request, and also if he does it very often,
this does not mean that he is untrustworthy; he might have foreseen in every case
that he would not have been able to succeed – and this is actually honest behavior.
Note that a trustor might nevertheless stop asking someone who rejects requests too
often – but such a decision is basically not about trust.

To succeed, a trustee has to be capable, so trust is clearly, among other things,
about the skills of an entity. However, consider the division of a trustee’s abilities
into:

• his skills,

• his ability to assess his own skills.

A trustee that underestimates his skills, will probably not accept a request; but when
he agrees, he will probably succeed, and so he will appear trustworthy. A trustee
that overestimates his skills will probably agree to a request and fail. This means
that trust is actually more about the ability to assess one’s own skills than about the
skills themselves.2 The self-assessment of skills implies another important ability
that a trustee should have: the ability to predict the environment. Only if a trustee
is able to predict the environmental conditions for his actions, he can assess whether
he will be able to succeed.

Finally, since a trustee is autonomous, even if he is skilled and able to assess
his own skills, the trustee can also accept and intentionally fail. Reasons for an
intentional failure can be to save costs or to harm the trustor. We call this kind of
behavior malicious behavior. For humans, the unwillingness to perform, due to a lack
of motivation, can also be the reason for a failure; however, we will not take this
cause into account, because it is currently not relevant for machines.

To summarize, “to trust” means generally to believe both in the skills of the
trustee, which encompasses his ability to correctly predict whether he will be likely

1Following the restriction to correct/incorrect information (see Sect. 1.1.2), we also restrict ourselves
to the binary view of failure and success of a trustee.

2There is evidence that at least a human’s ability to assess his own skills strongly depends on his
skills [89]; unskilled people tend to overestimate, whereas skilled people tend to underestimate
their skills.

57

4.1. Computational Trust Modeling

collecting evidence

decision-making

assessing trustworthiness

trustee's behavior environment

other criteria

Figure 4.1.: Forming evidence-based trust.

Alice

Bob

Carol

tru
sts trusts

trust?

Figure 4.2.: Trust relations.

to succeed, and in his willingness. Many problems arise in the process of build-
ing trust, even in the very early stages of collecting evidence. In the following, we
discuss such problems.

4.1.2. Modeling Trust

Much research has tried to adapt trust, as we humans use it, to the world of comput-
ers. To this end, a formal computable model has to be proposed. Several approaches
in this direction have been pursued (e.g., see [117]). We consider the approach of
evidence-based trust modeling as discussed in Section 2.3.3.1.

Evidence-based trust models specify how to derive trust in an entity from a set
of past experiences with that entity. Positive experiences generally increase trust,
and negative experiences reduce it. To achieve this, a model commonly follows the
following three steps (see also Fig. 4.1):

1. Collect evidence from interactions with other entities, in particular distinguish-
ing positive from negative experiences.

2. Combine the collected evidence to get an accurate assessment of an entity’s
trustworthiness.

3. Use the resulting trust as one criterion in decision-making concerning possible
interaction with other entities.

4.1.2.1. Properties of Trust

In general, trust is not transitive; this is illustrated by the following example (see also
Fig. 4.2): The fact that Alice trusts in Bob and Bob trusts in his mother Carol does
not imply that Alice should trust in Bob’s mother as well. Still, it is justified to apply
transitivity of trust in this case, if the following conditions are fulfilled:

1. Alice trusts in Bob to not lie.

58

4.1. Computational Trust Modeling

2. Alice trusts in Bob’s assessment of Carol’s trustworthiness.

3. The relations (Carol, Bob) and (Carol, Alice) are “equal”.

The fuzzy term “equal” refers to the fact that Carol might be variably trustworthy to
different persons. In the above example, Carol might for instance behave trustworthy
towards Bob, because he is her son, but not trustworthy towards Alice, because she
is not a member of her family. Consider another example, which is also covered by
Figure 4.2. Carol is a politician, Bob is her husband, and Alice is a reporter. Even
if Bob can truthfully tell Alice about his justified trust in Carol (conditions 1 and
2 are fulfilled), this does not imply that the reporter can trust in what Carol says;
this is the case because the third condition is not fulfilled. In the scenarios that we
are addressing in our thesis, that is where computers interact with each other, the
third condition concerns for instance the relations between the people operating the
computers.

From the above examples, it directly follows that trust is subjective, because it
might be the case that Bob trusts Carol, while Alice does not. Furthermore, trust is
not symmetric, that is, the fact that Bob trusts Alice does not imply that Alice trusts
Bob. Finally, trust is context-sensitive; to give an example, one can trust someone to
drive a car and at the same time not trust that person to fly a plane. This issue is
discussed in more detail in Section 4.1.2.4 below.

4.1.2.2. Sources for Trust

There are several ways to collect evidence for assessing an entity’s trustworthiness.
One way, and this is the only one we consider in our work, is to extract evidence from
direct experiences with that entity. If for instance Bob has sold low-quality products
to Alice several times, Alice can see this as an indicator of the general quality of
products sold by Bob, and so will no longer trust in Bob in this regard.

To build trust, one can also rely on information concerning trust that comes from
others. In the basic case, other entities report on the direct experiences they have had
with the entity in question. They can also report about the trust they have in that
entity, for instance in the form of a recommendation for an entity. Whenever one
uses information coming from others in the process of building trust, one has to be
careful, because as discussed above, trust is in general subjective and not transitive.
Besides this, entities may also report incorrect or unreliable information [180]. How-
ever, especially when an entity has just entered a system and has not yet enough
direct experiences with other entities, it may be helpful to rely on the opinions of
others. In order to mitigate the effects of misreporting entities and the subjectivity
inherent in trust, a “reputation system” [125] can be used that combines the opinions
of a large group of entities about a single entity’s trustworthiness. Such a combined,
global, assessment of trust, is called the entity’s “reputation” among that group. To
provide meaningful results, these systems require that many entities submit their
trust assessments of other entities to the reputation system.

59

4.1. Computational Trust Modeling

Has trustee malicious intent?

yes no

Because it was "unpredictable"?

Is his prediction of environmental cond. correct?

Is his prediction of his own capabilities correct?

trust

FAILURE/
SUCCESS

trust

SUCCESS

trust

FAILURE
no change
FAILURE

trust

FAILURE

yes no yes no

yes no

Figure 4.3.: When trust should be increased (++) and decreased (−−).

In our work, we only consider direct experiences, because there are scenarios
where this is the only source for trust, e.g., in volunteer computing systems. As a
side effect, this implies that we do not have to deal with the problematic transitivity
property of trust.

4.1.2.3. Delusive Evidence

“Both types of mistake – trusting too well and not well enough – can be
costly.” [51]

This quotation leads to the question of what observation is factual evidence for a
trustee being more or less trustworthy. In particular, whether a success is always
evidence for a higher trustworthiness, and vice versa, whether a failure is always
evidence for a lower trustworthiness. Consider the following example of an aviator:

Example 4.1. Aviator Howard is considered as one of the best aviators, and you trust him
too. So, you rely on him and let him fly you to some destination. There is no evidence of bad
weather, and so he predicts that the weather will be fine. He takes off and the flight appears to
become routine. But suddenly, a storm whips up from nowhere. As a consequence, the plane
crashes – but he and all the passengers miraculously survive. He did not succeed in flying
the plane to the destination. However, his trustworthiness as a pilot should not decrease; it
could even increase.

Prompted by this example, we now analyze in which cases the trust in another
entity should be decreased and when it should be increased. This will show that
there are both cases where a failure does not form negative evidence, and where a
success does not form positive evidence.

The following reasoning is illustrated in Figure 4.3. After having selected a trustee,
a trustor requests the trustee to perform a certain task. The trustee has then to de-
cide whether to accept the request or not. If he is malicious, he will subject this

60

4.1. Computational Trust Modeling

decision to his strategy; in the case that he accepts, his strategy will further de-
termine whether he is going to fail intentionally. Generally, malicious intent in a
trustee is sufficient reason to decrease the trust in the trustee. Of course, this mali-
cious intent cannot always be recognized, particularly if the trustee pretends to be
honest, but this analysis tries only to identify the different cases without discussing
how to distinguish them in practice. If the trustee is not malicious, he will try to
predict whether he can successfully handle the request. To this end, he forecasts the
environmental conditions, and assesses his skills for processing the request under
these expected circumstances. He only accepts if he believes that he will succeed.
However, the actual environmental conditions can differ from the trustee’s predic-
tion and he might fail for this reason. The error can be due to the trustee’s inability
to make this prediction; but the conditions can also evolve in an “unpredictable”
way, in which case his failure should be considered excusable [148]. The meaning of
“unpredictable” needs to be decided by the trustor; it depends among other things
on how much time passes between the acceptance and the processing of the request,
and on whether other trustees would have been capable of making the correct pre-
diction. Another reason for a failure of the trustee is the trustee’s overestimation of
his capabilities. This can even be the case if the prediction of the environmental con-
ditions is correct. Since this misestimation will probably occur for future requests
as well, the trust should be reduced. Again, see Figure 4.3 for an overview of this
reasoning.

To make the boundary between positive and negative evidence as clear as possible,
it is important to explicitly state in a contract the environmental conditions under
which a trustee is expected to succeed. However, malicious trustees can still delude a
trustor with a strategic success, and a failure can still be excusable if the environment
evolves in a manner not foreseen by the contract, what is also known as “unknown
unknown”.

A Limit of Trust Modeling The delusiveness of evidence implies one important
limitation of trust modeling. Given that the trustor is not able to look in a trustee’s
mind; if a malicious trustee is able to emulate the behavior of a trustworthy trustee, we can-
not distinguish between a trustworthy trustee and a malicious trustee, who pretends to be
trustworthy. Basically, we face the halting problem [140] or the problem of verifying
a scientific theory. This suggests that for a trustee that has never showed malicious
behavior up to the present, we cannot make any conclusion. Nevertheless, there
is one reason why we do learn something about a trustee who always behaves in
a trustworthy manner. In scenarios where trustees have incentives to behave mali-
ciously, trustworthy behavior entails costs (such as the time expended in building
trust). Therefore, a malicious trustee that behaves trustworthily is making an in-
vestment, and wants to break even at some point, which in turn requires malicious
behavior in the future. This argues in favor of treating trustworthily behavior as evi-
dence for trustworthiness. Actually, if the costs of a trustee for behaving trustworthy
and maliciously could explicitly be modeled, trust could be defined as: the differ-

61

4.1. Computational Trust Modeling

environment
(observable)

attitude
& strategies

skills/
commitment

trustee

behavior
(observable)

Figure 4.4.: The mind of the trustee is not observable.

ence between the investment of the trustee in the past, and the profit he could make
when behaving maliciously in the next interaction multiplied by the probability of
being exposed.

4.1.2.4. Further Issues

In the previous paragraph, we have seen that it is not obvious whether an outcome of
an interaction is actually positive or negative evidence. The intrinsic reason for this is
that the trustor has no access to the trustee’s mind, as illustrated in Figure 4.4. At the
most, the trustor can observe the behavior of a trustee and (parts of) the environment
in which the trustee acts. However, in order to predict a trustee’s behavior in future
interactions, the trustor needs to understand the trustee: his attitude, his strategic
intents, his abilities and his commitment. A sophisticated trust model would account
for all these characteristics of the trustee. This emphasizes that trust modeling deals
with issues that differ from those addressed by conventional forecasting techniques
such as extrapolation or trend estimation. In the following, we discuss several such
issues.

Whitewashing In many distributed systems such as P2P systems, the identities of
entities are often not linked to physical resources. As a result, entities can take part in
the systems with several distinct identities [40]. In these scenarios, whitewashing [112,
71] becomes possible: An entity can try to change its identity in order to reset its
damaged reputation. To avoid this happening, a trust model has to make the initial
trustworthiness assigned to an identity low enough that an entity cannot profit from
renewing the identity. The threat of whitewashing is addressed in Section 4.2.2.1,
where we evaluate our trust model.

Context-Sensitivity Trust can be called context-sensitive if an experience that has
been made in a certain context is only significant for trust-based decisions in similar
contexts. McKnight and Chervany [101] give the example that “one would trust
one’s doctor to diagnose and treat one’s illness, but would generally not trust the
doctor to fly one on a commercial airplane”. So, a first notion of context means the
type of task that has to be performed [68, 85]. In a second notion, context refers to the

62

4.1. Computational Trust Modeling

potential trustees

trustor

select &
request

reply

}
malicious / incompetent

Figure 4.5.: Situation where trust is helpful.

circumstances under which a task has to be performed [119]; for instance if a pilot
succeeds in flying a plane in a storm, he will be able to fly the plane in good weather,
too – but the converse is not that obvious. Generally speaking, everything that can
impact the behavior of a trustee and is not part of the trustee itself, belongs to the
context [38].

The context-sensitivity of trust can be exploited by attackers, for instance to launch
an attack on a volunteer computing system as follows.3 For a series of very easy com-
putational tasks the attacker returns the correct results, but then for a very complex
task, he returns a random result. This attack shows that a number of correct results
for easy tasks is not necessarily evidence for this worker’s performance on complex
tasks.

The spot-checking mechanism proposed in the previous chapter is also part of the
trust model that is proposed later in this chapter. For this mechanism, to make sure
that the probabilities of single requests within a set of requests are independent,
all requests have to belong to the same context. To account for context-sensitivity
beyond a single set of requests, other mechanisms have to be used. Instead of ex-
plicitly addressing this issue in our work, we refer to existing approaches from the
literature: [119, 32, 86].

Exploration vs. Exploitation Figure 4.5 shows how a distributed information sys-
tem appears from the perspective of a trustor (analogous to Fig. 1.1). Consider the
situation where the trustor has a sequence of tasks that he wants do delegate one af-
ter another. Furthermore, assume that for each delegated task, the trustor can collect
evidence about the respective trustee, e.g., whether he succeeded or failed. At the
beginning, the trustor chooses some trustee randomly, because he has no knowledge
about the entities. After this, the trustor learns about the trustworthiness of the se-

3The authors of [84] call such attacks “value imbalance attacks”.

63

4.1. Computational Trust Modeling

lected trustee. At this point, the question is how to select the next trustee. Assume
the selected trustee succeeded, meaning that he might be seen as more trustworthy
than all other entities. Still, he might in fact be less trustworthy. This results in a
dilemma known as the “exploration vs. exploitation”-problem: The trustee has to
explore the population of entities to get to know them better; but at the same time, the
trustee wants to exploit his knowledge about the entities’ trustworthiness and select
only those that appear trustworthy. One basic approach to this problem is known as
the “Boltzmann exploration”, in which one selects an entity with a probability that
is proportional to the value that this selection is expected to have [113, Chapter 10].
We adapt this approach later in Section 4.2.4 to the use in our trust model.

The explore vs. exploit dilemma is known in the areas of approximate dynamic
programming and reinforcement learning. In addition to these domains, the dilemma
gains an additional facet when it concerns the entities’ trustworthiness, namely the
aspect of forgiveness. Suppose that a trustor selects a trustee, but the trustee fails
because of a lack of commitment. By purposefully selecting this trustee again, the
trustor shows the trustee that he is prepared to give him another chance, which in
turn can motivate the trustee to make a greater effort. However, this aspect, which
is strongly related to psychology, is less relevant for our work, because we deal with
machines.

4.1.3. Trust in Information Sources

We define trust in the context of information acquisition as follows:

Definition 4.1 (Trust in an information source). Trust is a belief of an entity A about an
autonomous source B, which helps A to estimate whether a replyR provided by B upon some
request Q by A, makes (Q,R) a fact, without A having to check R. Trust anticipates both
B’s attitude towards A, and B’s ability to ensure that the provided information is correct.

This implies that an entity A trusts maximally in an information source B, if it
believes that:

• if B provides informationR to some requestQ from A, then B strongly believes
that (Q,R) is a fact, and

• if B strongly believes something, then it is correct.

The first belief concerns B’s intentions: If B were malicious, it would probably pro-
vide some R′ believing that (Q,R′) is not a fact, or it was not sure whether (Q,R)
is a fact. The second belief concerns B’s competence, i.e., if B were incompetent, its
belief in (Q,R) would not be founded or wrong. Note that this definition conforms
with the notions defined by Demolombe [36] (see also Sect. 6.1.3.1 for a discussion).

64

4.2. Evidence-Based Trust in Information Sources

4.1.3.1. Incompetent and Malicious Sources

As mentioned above, there can be incompetent or malicious information sources.
An incompetent but honest information source is not able to guarantee that the in-
formation it provides is correct, but thinks that it is able to do so; apart from this,
it is not lacking of commitment nor has it malicious intent; in fact, it aims to pro-
vide the truth. In contrast to an incompetent source, a malicious source does not aim
to provide the truth. We distinguish four different types of malicious information
providers:

Careless Source Does not care about the truth.

Cheater Tries directly to maximize his profit.

Manipulator Provides information in order to guide the trustor in a certain direction.

Saboteur Tries to provide incorrect information so as to harm the trustor.

Malicious sources have in common that they try to stay undetected by the trustor
– they want to stay in the game as long as possible. A careless information source
provides information although it neither believes that the provided information is
correct nor that it is incorrect. Reasons for this behavior can be for instance that the
source either is able to ensure the correctness of provided information, but is not
committed enough to do so, or that the source knows that it is not able to ensure
the correctness, but provides the information anyhow. Frankfurt [49] calls these in-
formation providers “bullshitters” (see also [27]). The three other types of malicious
sources are generally both competent and committed, and so intentionally provide
incorrect information. A saboteur tries to maximize the damage he can inflict on the
trustor. In contrast to the saboteur, cheaters and manipulators do not necessarily want
to harm the trustor: Cheaters try directly to optimize their profit, for instance by
providing cheaply generated information that is known to be incorrect; manipula-
tors provide incorrect or incomplete information with the aim of causing the trustor
to make decisions based on this information, which are in the end beneficial to the
manipulators – but possibly harmful to the trustor.

For the evaluation of our work we focus on incompetent sources and cheaters,
because careless sources and manipulators seem to be irrelevant in computer net-
works; the evaluation of our work for saboteurs is discussed in Section 6.2.3. The
difference between incompetent and malicious sources is illustrated by the following
two examples.

4.2. Evidence-Based Trust in Information Sources

Trust can be helpful in ensuring the correctness of acquired information in cases
where verification of the information is not easily possible; as outlined in the intro-
duction, the verification can for instance be too costly or time-consuming; or it can

65

4.2. Evidence-Based Trust in Information Sources

only be carried out at a later point in time; or cannot be done at all. However, in
precisely these cases, it is not clear how to assess the trustworthiness of an informa-
tion source: The provided information cannot be verified, and so cannot be used as
evidence of a source’s trustworthiness. At this point, spot-checking with challenges
from Chapter 3 can be used: Replies to challenges can be verified, and so can serve
as evidence. In turn, the more certain we are that a source is trustworthy, the fewer
challenges we have to use for spot-checking. Note that the pure spot-checking mech-
anism is concerned with estimating the correctness of acquired information, whereas
the trust model proposed in the following concerns the properties of an informa-
tion source.

4.2.1. Basic Model

In the following, we describe a model to compute a “trust value”, that is, a measure
of an information provider’s trustworthiness. An additional value of uncertainty
measures how significant the trust value is. These two values can later be used as
criteria for selecting good information sources.

The model assumes that an information source can be described by a probability
ρ: With probability ρ it returns incorrect information to a single request, with proba-
bility 1− ρ it returns the correct information. We call ρ also the error rate of an infor-
mation source. The model is based on a repetitive application of the spot-checking
mechanism from the previous chapter. The aim of the model is to extrapolate the
estimates of past error rates of an information source, while keeping in mind the
possibility of malicious sources that intentionally increase or decrease their error
rate over time. One main idea of the model is to group sequential evidence together
as long as it is self-consistent. If new evidence comes up that conflicts too much with
older evidence, it is assumed that the error rate of the provider has changed, and so
the older evidence is treated separately. This accounts both for tactical behavior and
also for changes in a provider’s competence.

4.2.1.1. Single Error Rate Estimation

Applying the spot-checking mechanism from the previous chapter, the number of
incorrect replies to a set of n challenges is binomially distributed with parameters n
and ρ. So, we can estimate the error rate ρ of the information source with the use of
Bayes’ theorem:

f (ρ|y) = p(y|ρ) f (ρ)
p(y)

. (4.1)

The probability of finding exactly y incorrect answers to the challenges, given ρ,
follows from the basic product rule [77, p. 51] and the independence between the
single replies:

p(y|ρ) = ρy(1− ρ)n−y . (4.2)

66

4.2. Evidence-Based Trust in Information Sources

Since we are dealing with attackers, we again choose the prior, which is continuous
here, to be uniform:4

f (ρ) =

{
1 for 0 ≤ ρ ≤ 1
0 otherwise .

(4.3)

The probability p(y) can be computed by marginalization over ρ:

p(y) =
∫

p(y|ρ) f (ρ)dρ (4.4)

=
∫ 1

0
ρy(1− ρ)n−ydρ . (4.5)

Putting everything together, what we eventually find is the beta distribution [170, 171]:

f (ρ|y) = ρy(1− ρ)n−y∫ 1
0 ρy(1− ρ)n−ydρ

. (4.6)

The beta distribution is defined by two “shape parameters” α and β, which in our
case are y + 1 and n − y + 1 respectively. The mean of the beta distribution, and
therefore the best estimator ρ̂ of the error rate, is:

ρ̂ =
α

α + β
=

y + 1
n + 2

. (4.7)

The standard deviation of the beta distribution is:

σ =

√
αβ

(α + β)2(α + β + 1)
. (4.8)

4.2.1.2. Trust Values

We base our assessment of an information provider’s trustworthiness on the infor-
mation we have to hand, namely how accurate the source was estimated to be in
the past. Table 4.1 shows an example of such information. Each row represents
an application of the spot-checking mechanism from the previous chapter. One re-
quest/reply is described by a number of real requests (m) and challenges (n), and
the number of incorrect replies to the challenges (y). Based on ni and yi, the error
rate ρ̂i of the information source can be estimated for each request. In order to learn
from the past, we want to combine these error rate estimates into an aggregate trust
value. When no request has been made yet, we create an initial error rate estimate ρ̂0

4For a discussion of this issue see Section 3.3.1.1.

67

4.2. Evidence-Based Trust in Information Sources

Table 4.1.: History of requests made to one information provider.

Request ID #Real requests #Challenges #Incor. replies to Error rate estimatethe challenges

i = 1 m1 = 10 n1 = 10 y1 = 3 ρ̂1 = y1+1
n1+2

i = 2 m2 = 5 n2 = 20 y2 = 1 ρ̂2 = y2+1
n2+2

...
...

...
...

...

i = 99 m99 = 10 n99 = 10 y99 = 2 ρ̂99 = y99+1
n99+2

for n = y = 0, which gives ρ̂0 = 0.5. This estimate reflects our a priori trustworthi-
ness assessment of an information source. For a new reply from a source, we then
compute an aggregate trust value t for that source in form of a weighted average:

t def
=

∑i wi(1− ρ̂i)

∑i wi
, (4.9)

where the wi are positive weights that can be used to give older estimates ρ̂i less
weight than newer. The trust value t, and also the variants that are proposed below,
are real values in the interval (0, 1). The values 0 and 1 are not possible, because all
error rate estimates ρ̂i are in (0, 1) as well. This corresponds with the intuition that
an arbitrarily long sequence of positive experiences with a source is no guarantee
that a negative experience will never occur, and vice versa.

Choice of Weights The only restriction we impose on the weights is that at least
one of them has to be greater than zero. How fast the weights decrease defines how
fast the trustor thinks that older evidence becomes outdated; in other words, how
fast the trustor “forgets” or “forgives”. To not forget at all, all weights can be set to

1. To get linearly decreasing weights, they can be defined as wi
def
= (i + 1). To make

a linear moving average that discards all but the l last replies, they can be defined

as wi
def
= max(i − imax + l, 0), where imax is the index of the latest request. Finally,

to apply an exponential moving average, the above trust value can be computed
recursively with the use of an “aging factor” A ∈ (0, 1]:

ti
def
= A · (1− ρ̂i) + (1− A) · ti−1 . (4.10)

This update rule is commonly used in the field of reinforcement learning [155].

Combining Evidence of Multiple Replies Assume that ρ does not change over time.
Then, the larger the number of challenges in an estimation of the error rate ρ̂, the
more precise the estimate will be. Therefore, combining the evidence first and then

68

4.2. Evidence-Based Trust in Information Sources

computing an error rate estimate yields a different result than computing the error
rate estimate for small portions of evidence first and then combining them as in
eq. (4.9); this is because in the latter case several imprecise estimates are combined,
which makes the resulting estimate no more precise. However, the combination
of evidence is justified probabilistically only if ρ does not change over time; but
provided that the error rate estimate changes only little from one reply to another,
the probability is high that the actual error rate has changed only little as well.
Therefore, it makes sense to group evidence together as long as it is similar. If an
abrupt change in the error rate occurs, a new group of evidence is created. What is
more, the grouping of similar evidence attaches special attention to abrupt changes
in the error rate estimates. At the same time, this makes the model more robust
against attackers, as we show later in the experiments, because abrupt changes are
especially characteristic of malicious information providers that intentionally change
their error rate, for instance due to strategic considerations.

The idea of combining evidence can be implemented as follows. Let ρ̂[l1, l2] denote
an error rate estimate based on the combined evidence from the replies with indices
l1 to l2, i.e., based on {ρ̂i}l2

l1
. A threshold ε, which we call the “tolerance factor”, is

now defined when the evidence of two or more consecutive replies is combined: If
there is an x such that all consecutive error rate estimates {ρ̂i}l2

l1
are in the interval

[x− ε, x + ε], then their evidence is combined to compute ρ̂[l1, l2]. We call [x− ε, x +
ε] the “tolerance interval”; the tolerance interval actually determines how much
variation in the correctness of the information should be tolerated; one has to keep
in mind though that such variations are partly caused by the fact that the challenges
are randomly placed in the request.

The algorithm for combining the evidence works as follows. For every new error
rate estimate with index lnew check whether it is similar enough to the latest group
of error rate estimates, and if so, combine the evidence; otherwise:

1. Search for the earliest l such that {ρ̂i}lnew
l respects some tolerance interval [x−

ε, x + ε]; possibly the earliest such l is lnew itself, and {ρ̂i}lnew
l consists only of

ρ̂lnew .

2. Repeat step 1 starting from index l − 1 downwards, creating further groups,
until all evidence has been grouped.

For each set of combined evidence with indices from l1 to l2, compute a combined
error rate estimate based on yl1 to yl2 and nl1 to nl2 . Lastly, compute the final trust
value, denoted by ṫ, by applying eq. (4.9) to the set of combined error rate estimates.
In contrast to t, this trust value ṫ accounts for sudden changes in an information
provider’s error rate, which point to strategic moves, and thus to malicious behavior.

4.2.1.3. Uncertainty

A trust value does not reflect how certain we are about its significance. For instance,
when no information has been requested from a particular information source, the

69

4.2. Evidence-Based Trust in Information Sources

trust value for the source is set to ti = 0.5 (because we have t = w0·(1−ρ̂0)
w0

= 1−
ρ̂0). This value is caused by the assumption of a uniform error rate prior, but it
is not backed by any evidence. If now an observation of y incorrect and equally
many correct challenges is made, the trust value will stay at 0.5, but this value is
now backed by some evidence. Therefore, we additionally compute a measure of
uncertainty that reflects the amount of evidence used for the computation of t. Wang
and Singh [167] postulate that a measure of uncertainty should have two properties:

• the more evidence is taken into account, the lower is the uncertainty, and

• the more “conflict”5 there is in the evidence, the higher is the uncertainty.

We prove in Appendix A.3 that the standard deviation of the beta distribution has
both properties. Since the standard deviation is simpler and easier to compute than
the measure introduced by Wang and Singh [167], we use it as our uncertainty
measure.

Let σi be the standard deviation corresponding to ρ̂i. To normalize it to the interval
(0, 1], we use 2

√
3σi (see App. A.3). To get the uncertainty corresponding to t we

apply the weighted average as for the trust value:

u def
= 2
√

3 · ∑i wiσi

∑i wi
. (4.11)

If no evidence is given, the uncertainty takes value 1. If we get the first reply, we
can make our first error rate estimate and the uncertainty drops. This is not yet our
final uncertainty measure: As long as we do not change the number of challenges,
for any further reply the level of uncertainty will stay at the same level, because for
all new evidence that comes in, we discard the same amount of older evidence. At
this point, we use the idea of combining the evidence of several consecutive error
estimates. Let ni be the number of challenges used for reply i, and yi be the number
of incorrect answers to these challenges. Then we can combine the evidence of a set
of consecutive replies l1 to l2 as follows:

α[l1, l2] =

(
l2

∑
i=l1

yi

)
+ 1 , (4.12)

β[l1, l2] =

(
l2

∑
i=l1

ni − yi

)
+ 1 . (4.13)

The standard deviation can now be computed on the basis of these shape parameters
to give σ[l1, l2]. Above, we showed how to apply the tolerance factor ε to shrink
the set {ρ̂i}i. We now compute the standard deviations on this reduced set, and
combine these as in eq. (4.11) to get the final uncertainty measure, denoted by u̇.

5Conflict is high if the number of correct and incorrect replies is similar.

70

4.2. Evidence-Based Trust in Information Sources

As a consequence, the uncertainty for a source with constant error rate will drop,
because the set of evidence for a particular error rate increases.

The uncertainty measures u and u̇ are in the interval (0, 1]; in the beginning they
both are at 1, decreasing as more evidence comes in, but never reaching 0. This
corresponds with the intuition that one can be totally uncertain about something,
but never totally certain.

4.2.2. Evaluation of Basic Model

Firstly, the computation of trust and uncertainty values are experimentally evaluated
against defined attacker models, and compared to other models from the literature.
Secondly, the accuracy of the trust value as an error rate estimate for the current
reply is assessed. Finally, the computational complexity of the trust and uncertainty
values is analyzed.

4.2.2.1. Evaluation against Different Source Types

Our model is evaluated against the following criteria:

• handling of trustworthy information sources

• dealing with error rates ρ > 0

• recognizing sources that behave honestly for a long time and then return some
errors (“repetitive cheaters”)

• robustness against whitewashing attacks.

We examine the trust value and the attached measure of uncertainty separately.
Three particular types of information source are considered:

Trustworthy source An information source that returns an incorrect reply with prob-
ability 0.00221. This error rate agrees with the findings of Kondo et al. [88] in
the volunteer computing scenario.

Source with ρ = 0.1 A source that returns an incorrect reply with probability 0.1.

Repetitive cheater A source that behaves as if it is a honest source, but submits 10
incorrect replies every 10th set of requests.

Trust Value For the computation of trust values, the following four trust models
from the literature are considered:

Jøsang & Ismail [79] If normalized to [0, 1], their core “reputation rating” is defined
as the mean of the beta distribution ri+1

ri+si+2 , where the terms ri and si denote the
evidence after interaction i, and are defined as yi + A · ri−1 and (n− yi) + A ·

71

4.2. Evidence-Based Trust in Information Sources

si−1 respectively, with r0 = s0 = 0; in our simulations, we set the aging factor
A to 0.5 and discuss the impact of other values. Since we do not consider
evidence coming from other trustors, the rest of their model is not relevant to
our comparison.

Zhao et al. 1 [185] Starts with a trust value of 0. For every correct reply the trust
value is increased by some constant, and reset to 0 for an incorrect reply. For
the simulations, we set the constant to 1/32 and discuss the impact of other
values.

Zhao et al. 2 [185] Starts with a trust value of 1. For every incorrect reply the trust
value is divided by two.

Wang & Singh [167] In their model, a core trust value is computed as y+1
n+2 , which

is once again the mean of the beta distribution. To make this into what they
call a “trust belief”, they multiply the core trust value with some uncertainty
value u. For the trust value comparison, we consider the core trust value, and
separately compare their uncertainty measure to ours in the next section.

We compare these models to our trust model ṫ, using m = n = 10, with the threshold
for combining evidence either set to ε = 3/12 or ε = 1/12; the first value tolerates a
variation of y within some interval [i− 3, i+ 3], while the second tolerates a variation
within [i− 1, i + 1]. The weights are set to (0.6, 0.3, 0.1).

In order to give statistically significant results, the simulations were run 210 times,
and average values and standard deviation have been computed. Results are shown
in Figure 4.6.

Results The two models of Zhao et al. are not able to cope with error rates of hon-
est sources greater than zero as seen in Figures 4.6(a) and 4.6(c). For Zhao et al. 1,
the trustworthiness of a honest source is reduced over time, and the trustworthi-
ness of a source with ρ = 0.1 goes to zero very quickly. Similarly, Zhao et al. 2
keeps the trustworthiness of a honest source at some maximum level around 0.7,
and a source with error rate ρ = 0.1 is considered completely untrustworthy. The
reason for this is that upon a single incorrect reply, which happens with a certain
low probability for these sources, the trustworthiness is decreased by half, or reset
to zero respectively. In addition to that, Zhao et al. 1 lacks a feature for forgetting;
that is, once a source has been assessed untrustworthy, this assessment cannot be
adjusted, and thus not be corrected if it was inaccurate. In the case of a repetitive
cheater this might seem to be the right approach; however, if the source is honest
but makes many errors on a single occasion (e.g., for request 10), the model would
forever ignore this source, even if it were to be the most trustworthy source there-
after. Zhao et al. 2 handles the repetitive cheater well, because it makes it hard, but
possible, to regain trustworthiness. A higher constant, with which the Zhao et al. 2
model increases the trustworthiness, would make it easier for a honest source to

72

4.2. Evidence-Based Trust in Information Sources

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

time (requests)

Jøsang&Ismail
Zhao et al. 1
Zhao et al. 2

(a) Trustworthy source.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

tr
us

t v
al

ue

time (requests)

t (δ=3/12)
t (δ=1/12)

Wang&Singh

(b) As on the left.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

time (requests)

Jøsang&Ismail
Zhao et al. 1
Zhao et al. 2

(c) Source with ρ = 0.1.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

tr
us

t v
al

ue

time (requests)

t (δ=3/12)
t (δ=1/12)

Wang&Singh

(d) As on the left.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

time (requests)

Jøsang&Ismail
Zhao et al. 1
Zhao et al. 2

(e) Repetitive cheater.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

tr
us

t v
al

ue

time (requests)

t (δ=3/12)
t (δ=1/12)

Wang&Singh

(f) As on the left.

Figure 4.6.: Evolution of trust values for different source types and models (m = n =
10).

increase its trustworthiness; at the same time it would make the model less robust
against repetitive cheaters. A drawback of both models is that they do not deal with
error rate estimates and so have no probabilistic substantiation.

The models of Wang & Singh, Jøsang & Ismail, and ours, behave similarly for

73

4.2. Evidence-Based Trust in Information Sources

trustworthy sources and sources with ρ = 0.1. In the case of trustworthy sources,
after a short time they all assess the trustworthiness of the source to be high. For
sources with ρ = 0.1, all models also assign high trustworthiness levels that are
still considerably lower than those for trustworthy sources. With a higher tolerance
value ε, our model stays a little below the other three trustworthiness assessments.
The reason is that the higher error rate makes it more probable that from time to
time the tolerance interval is violated. In fact, a large threshold ε is suitable in
scenarios where a rather large error rate is also common for trustworthy sources.
In scenarios such as volunteer computing, a small threshold (e.g., ε = 1) is more
suitable since it is less tolerant towards attackers. This becomes evident in the case
of a repetitive cheater. For the models of Jøsang & Ismail, a repetitive cheater needs
only about 10 requests to regain his former trust value. A decrease in the aging
factor λ Jøsang & Ismail’s model could change how quickly a repetitive cheater
could regain his former trust value. However, this would also have the effect that
newer evidence has a lower weighting, which means that the cheating event itself has
less impact, or in other words, is penalized less. For the model of Wang & Singh, the
cheating is never forgotten, but since the cheating events are rare, the trust value still
stays very high. Repetitive cheating is penalized more by our models, because after
the source has cheated, this event will be weighted with a fixed weight, no matter
how often the source behaves honestly afterwards. How strongly such a cheating
event is penalized by our model depends on the weights; e.g., in the simulation
cheating is weighted with 0.3, whereas a new positive experience gets a weight of
0.6. To reduce the probability of branding an honest source as a repetitive cheater,
a higher ε can be used: One can see in Figure 4.6(f) that for ε = 3/12, the lowest
average trust value decreases over time; this shows that cheating attempts do not
always violate the tolerance interval, however if cheating occurs several times, the
probability for a violation increases.

All models, except of Zhao et al. 1, are in principle able to cope with the whitewash-
ing attack. In this attack, entities renew their identity to reset their trust value (see
also Sect. 4.1.2.4). In the Zhao et al. 1 model, there is an incentive for whitewashing,
because an entity with a new identity gets assigned the highest possible trustwor-
thiness. For all other models, the initial trustworthiness is either zero (Zhao et al. 2),
which means complete resistance to whitewashing, or 0.5, which means that white-
washing can only be effective in cases where the error rate is commonly higher than
0.5 – in all other cases, an entity with ρ = 0.5 will have problems in competing with
other entities in the system; this is discussed in more detail later, when we examine
the selection of information sources.

To conclude, in contrast to the two models of Zhao et al., our model is based on
probabilistic considerations. Our model handles both honest sources and sources
with higher error rates (e.g., ρ = 0.1) well. Furthermore, it more heavily punishes
the behavior of repetitive cheaters than the model of Zhao et al. 1, and the models
of Wang & Singh and Jøsang & Ismail. Finally, our model is resistant against white-
washing attacks in the same way as the models of Zhao et al. 2, Wang & Singh and
Jøsang & Ismail.

74

4.2. Evidence-Based Trust in Information Sources

Uncertainty The uncertainty value reflects how uncertain we are about the trust
value. It should decrease fast for honest information providers, and increase for
unsteady sources. We prove in Appendix A.3 that our uncertainty measure fulfills
the same properties as the measure of Wang & Singh [167]. In this section, we want
to compare the two measures experimentally. The aim of these experiments is less
to get qualitative insights on which measure is the better. We rather want to study
how similarly the measures react to different source types. Wang & Singh compute
uncertainty as:

1
2

∫ 1

0

∣∣∣∣∣ xy(1− x)n−y∫ 1
0 xy(1− x)n−ydx

∣∣∣∣∣ dx . (4.14)

Similarly to the evaluation of the trust value in the previous section, we again con-
sider a trustworthy source, a source with a higher error rate, but now ρ = 0.3, and
a repetitive cheater. The simulations were run 210 times, and average values and
standard deviations were computed. Figure 4.7 shows the results.

Results For a trustworthy source, the differences between Wang & Singh’s measure
and ours are small (Fig. 4.7(a)); still, both our uncertainty values converge slightly
faster. The similarity between our measure with parameters ε = 1

12 and ε = 3
12 can

be explained by the fact that an honest source violates both tolerance intervals with
a negligibly small probability.

This is different for an information source with higher error rate, e.g., with an
error rate ρ = 0.3 (Fig. 4.7(b)). There, a smaller tolerance interval (ε = 1

12) is violated
regularly, and so the evidence cannot be combined very effectively, which results in
a persistent relatively high uncertainty value; for a larger tolerance interval (ε = 3

12),
evidence can be combined and so uncertainty decreases. The latter curve is similar
to that for Wang & Singh, although our measure decreases more quickly but stays
higher in the long run. Also for the larger tolerance interval, our measure will be
unlikely to converge to 0, because for such a high error rate the probability is high
that the tolerance interval is regularly violated; but in this case, the error rates vary
a lot and the trust value is indeed less certain.

Finally, the two measures respond differently to a repetitive cheater. Our mea-
sure reacts more strongly to abrupt changes in the error rate; again, with a smaller
tolerance interval more than with a bigger one. The reason is that the measure of
Wang & Singh does not explicitly address the case of such abrupt changes, and as a
consequence, does not apply a lower weight to the incompatible old evidence. This
makes our uncertainty measure better reflect the behavior of repetitive cheaters.

To summarize, for large tolerance factors, Wang & Singh’s uncertainty measure
and ours react similarly to trustworthy sources and honest sources with higher error
rates. If the tolerance factor is decreased, our measure stays higher and so better
reflects the uncertainty in case of repetitive cheaters. However, it also stays high for
sources with higher error rates, which is because only the most recent evidence is

75

4.2. Evidence-Based Trust in Information Sources

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

un
ce
rt
ai
nt
y

time (requests)

u (δ=3/12)
u (δ=1/12)

Wang&Singh

(a) Trustworthy source.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

un
ce
rt
ai
nt
y

time (requests)

u (δ=3/12)
u (δ=1/12)

Wang&Singh

(b) Source with ρ = 0.3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

un
ce
rt
ai
nt
y

time (requests)

u (δ=3/12)
u (δ=1/12)

Wang&Singh

(c) Repetitive cheater.

Figure 4.7.: Evolution of uncertainty values (m = n = 10).

considered. That means that in our model, we can learn more about a source with
constant error rate when we chose a higher tolerance factor.

Jøsang & Ismail [79] propose the uncertainty measure 2
n′i+2 , where n′i is in our

case n′i = ni + A · n′i−1 (A is again some aging factor, and n0 = 0). However, this
measure does not account for any changes in the number of incorrect replies, and
so does not consider conflict. Besides, it does not account for sudden changes in
error rate estimates. In fact, for all three kinds of sources, it would result in the same
exponentially-decreasing function, and thus is not qualified for our purposes.

4.2.2.2. Trust Value as Error Rate Estimate

Provided that a source can be described by a single error rate ρ, and if looking at a
single request, the best estimate of xi

mi
is given by ρ̂i (see eq. (4.7)); this is because X

and Y follow the same binomial distribution. However, as for instance in the case
of a repetitive cheater, the description of the sequence of a source’s error rate can
be more complex than a single error rate ρ. For this reason, and because it also
includes knowledge about the past, it might be better to use the trust value (1− ṫ)

76

4.2. Evidence-Based Trust in Information Sources

Table 4.2.: Avg. mean/std. dev. of error in estimating x
m (27 requests, m = n = 10).

Type of source ρ̂ 1− ṫ with W1 1− ṫ with W2 1− ṫ with W3

Trustworthy 0.084/0.016 0.009/0.016 0.009/0.015 0.008 /0.014
ρ = 0.1 0.114/0.082 0.097 /0.067 0.097 /0.072 0.103/0.081
ρ = 0.3 0.154/0.114 0.133 /0.098 0.139/0.105 0.153/0.114
Repetitive cheater 0.091/0.027 0.159/0.041 0.121/0.032 0.043 /0.024
Flicker source 0.083 /0 0.332/0 0.249/0 0.083 /0

as an estimator for the error rate xi
mi

.

We compare the accuracy of the two estimators ρ̂ and 1− ṫ for different types of
information sources. We find that for a certain choice of the weights, 1− ṫ is in fact
a better estimator than ρ̂. As defined in Section 4.2.2.1, we consider a trustworthy
source, a source with ρ = 0.1 and also a source with ρ = 0.3, and a repetitive cheater.
Additionally, we consider a source that returns no incorrect replies if the request
count is odd, and m+ n incorrect replies if it is even. We call this source flicker source,
because the number of incorrect replies changes in the most extreme way. Flicker
sources are unlikely to appear in practice, because their trust value would decrease
very fast, and so they would be very “unattractive”, making cheating ineffective;
however, we consider them here, because they nicely show the impact of the weights
on the accuracy of 1− ṫ as estimator.

The question is, which error of estimate is lower: |ρ̂i − xi
mi
| or |1− ṫi − xi

mi
|. For the

trust value computation, we considered three sets of weights, W1 = {0.6, 0.3, 0.1},
W2 = {0.9, 0.1} and W3 = {1}, reflecting different ways to discount old evidence.
We ran simulations consisting of sequences of 27 requests, where each sequence was
run 212 times. For every request the mean error of an estimate and its standard
deviation were computed. The average of these means and the standard deviations
are shown in Table 4.2. Gray cells indicate the minimum estimation errors in each
row for the respective source type.

The trust value is generally a better estimate of x
m for honest sources, and sources

with ρ = 0.1 or ρ = 0.3. For a source with ρ = 0.3, weights W1 and W2 seem most
suitable. However, for repetitive cheaters and particularly for flicker sources, these
weights make the trust value a poor estimator. The reason for this is that weights W1
and W2 “forget” slowly, and so abrupt changes in the error rate are damped, causing
the estimate to be too high or too low.

In conclusion, for all considered types of sources, 1− ṫ with weight W3 is a better
estimator for x

m than ρ̂. Therefore, we use it as estimator of x
m in the remaining part

of the chapter; We write ṫW3 as shorthand for 1− ṫ computed with W3.

77

4.2. Evidence-Based Trust in Information Sources

4.2.2.3. Computational Complexity

Theorem 4.1. For a sequence of r requests, a trust and an uncertainty value can be computed
in O(r).

Proof. To compute a trust value, the error rate estimates for all replies has first to be
computed; this is in O(r). Then, the evidence of replies with similar error rates is
combined, and the error rate estimates are recomputed for the combined evidences.
This is again in O(r), because in the worst case the evidence of every pair of suc-
cessive replies can be combined, and so r

2 error rate estimates have to be computed;
if no evidence is combined, all the error rate estimates from the previous step can
be used. In the final step, the weighted average has to be computed, which again is
in O(r). The overall complexity is thus linear in r. For the uncertainty, instead of
an error rate estimate, the standard deviation of the beta distribution is computed,
which is also in O(r). Apart from that the procedure is the same, and thus it is in
O(r) as well.

4.2.3. Reducing Number of Challenges

In this section, we show how to use trust in order to reduce the number of challenges.

4.2.3.1. Approach

As humans, we feel less need to check an information source once we have a deep
trust in it; this is because we believe that it is very improbable that we will receive
incorrect information from it. This idea can be applied to our mechanism: The more
we trust, the fewer challenges we have to use. To this end, we first combine the trust
value and the corresponding uncertainty value as follows:

T def
= ṫ · (1− u̇) . (4.15)

This term is large only if both the trust value is high, and the uncertainty is low;
in other words, if we are sure about the trustworthiness of a source. For a highly
trustworthy source, we want to use a smaller number of challenges. Therefore,
given some initial number of challenges n′, we can determine a reduced number of
challenges n as follows:

n =
⌈
(1− T) · n′

⌉
. (4.16)

Because a source might become malicious at some point, it appears to be advisable
always to use some minimum number of challenges nmin. To control the speed with
which trust and uncertainty reduce the number of challenges, T can be raised to a
specified power, i.e., Tk; for k > 1 the decrease is slowed down, for 0 < k < 1 it is
accelerated. To summarize, the final number of challenges is given by:

n = max
(

nmin,
⌈
(1− Tk) · n′

⌉)
, for some k > 0 . (4.17)

78

4.2. Evidence-Based Trust in Information Sources

If m + n is decreasing, an attacker could deduce that the number of challenges is
being reduced. To counter this, the number n + m should be made constant by
increasing m when decreasing n.

4.2.3.2. Evaluation

To study the effects of a flexible number of challenges on the accruing costs, we
compared it to the approach that uses a fixed number of challenges. A flexible
number of challenges allows for more challenges to be used in the beginning to test
unknown sources, reducing it once a source is known better. We conducted the
experiments with n = 16 as starting point for a flexible n, which can be reduced
down to nmin = 4. The number of challenges is reduced according to eq. (4.17);
we use k = 2, which makes the reduction more cautious. These values are fairly
arbitrary and probably not optimal, but we show that these values can already make
a flexible n superior to a fixed n under certain conditions. At this point, we do not
address the issues of how to find optimal boundaries for flexible n, or optimal values
of k. The tolerance factor ε is defined differently for flexible and fixed numbers of
challenges: ε = 1

7 and ε = 1
10 respectively. We do this because for the lower numbers

of challenges that occur in the flexible approach, the steps in the error rates become
bigger and so a higher tolerance factor seems reasonable. The costs for an actual
request i are computed as follows (compare to eq. (3.11)):

Ci = ni · cc + mi ·
∣∣∣∣ṫW3 − xi

mi

∣∣∣∣ · cr , (4.18)

where ni is the number of challenges used in request i, cc are the costs for one
challenge, cr are the costs for an error of 1 in the error rate estimate, and ṫW3 is the
trust value, but now computed with a single weight 1 (as discussed in Sect. 4.2.2.2).
We fix the costs for a challenge to cc = 1 and vary cr to learn about the impact
of the relation between cc and cr. For cr = 100, this means for instance that one
challenge costs as much as an error in the estimate of 1/100. Note that the above
cost function does not explicitly account for extra costs that would arise when a
reply was discarded; these additional costs would for instance depend on whether
the information source was paid in the case of a rejection. This means that the
costs cr also have to reflect the costs that follow from a decision that is based on an
incorrect error rate estimate.

Optimal fixed number of challenges For the fixed number of challenges, we use
the optimal number of challenges, as derived in Section 3.2. However, since we are
only considering a mean value as estimate, and not a whole distribution, we need to
adapt the error and risk functions accordingly (recall that x and y are independent

79

4.2. Evidence-Based Trust in Information Sources

Table 4.3.: Optimal numbers of challenges (m = 10, cc = 1).

cr = 1 cr = 10 cr = 50 cr = 100 cr = 1000

n = 1 n = 3 n = 8 n = 8 n = 18

here):

E(m, n, y, x) = m ·
∣∣∣∣ y + 1
n + 2

− x
m

∣∣∣∣ , (4.19)

R(m, n) =
∫ 1

0
∑
y

∑
x

p(y|ρ) · p(x|ρ) · E(m, n, y, x)dρ . (4.20)

The optimization of eq. (3.11) with the new risk function then gives the optimal
values of n as shown in Table 4.3. In the following experiments, we use the respective
optimal n for each cr.

Experiments The experiments were run 212 times, and mean values computed.
Results are shown in Figure 4.8. For a trustworthy source (Fig. 4.8(a)), a flexible
number of challenges decreases the costs for cr = 50, and for cr = 100 after a short
while; for a higher cost of the challenges cc, a flexible n would have an even greater
pay-off. If however an error in the estimate is very cheap (cr = 1), the optimal fixed
n is 1 and therefore a fixed n is cheaper than a flexible one. The same holds for a
source with an error rate of ρ = 0.1 (Fig. 4.8(b)). For a repetitive cheater, it is not
that evident from Figure 4.8(c) which approach is more costly. Therefore, the costs
are replotted as cumulative costs in Figure 4.8(d). Then it can be seen again, that a
flexible number of challenges is cheaper for higher cr; a higher cc would result in a
better margin.

To reduce the costs in the case of ρ = 0.1, one can make the tolerance interval
bigger. The effects of this measure are shown in Figure 4.9(a): The costs for flexible
n now stay much lower, because the tolerance interval is less easily violated and so
the number of challenges stays smaller; the drawback is of course that this makes
the model more vulnerable to repetitive cheaters and the costs increase, as can be
seen in Figure 4.9(b).

To summarize, for all considered types of sources, a flexible n pays off when the
costs for a challenge (cc) are low compared to the cost of making an error in the
estimate (cr).

80

4.2. Evidence-Based Trust in Information Sources

0

20

40

60

80

100

120

20 40 60 80 100 120

co
st
s

time (requests)

cr=1 cr=50 cr=100

(a) Trustworthy source.

0

20

40

60

80

100

120

140

20 40 60 80 100 120

co
st
s

time (requests)

cr=1 cr=50 cr=100

(b) Source with ρ = 0.1.

0

50

100

150

200

250

20 40 60 80 100 120

co
st
s

time (requests)

cr=1 cr=50 cr=100

(c) Repetitive cheater.

0

1000

2000

3000

4000

5000

6000

7000

8000

20 40 60 80 100 120

su
m

 o
f

co
st

s

time (requests)

cr=1
cr=50
cr=100

(d) Repetitive cheater (sum of costs).

Figure 4.8.: Costs for flexible n (solid, ε = 1
7) and fixed n (dashed, ε = 1

10) (m = 10,
cc = 1).

0

20

40

60

80

100

120

20 40 60 80 100 120

co
st
s

time (requests)

cr=1 cr=50 cr=100

(a) Source with ρ = 0.1.

0

2000

4000

6000

8000

10000

12000

20 40 60 80 100 120

co
st
s

time (requests)

cr=1 cr=50 cr=100

(b) Repetitive cheater (sum of costs).

Figure 4.9.: Costs for flexible n for ε = 1
7 (dashed), and ε = 2

7 (solid) (m = 10, cc = 1).

81

4.2. Evidence-Based Trust in Information Sources

4.2.4. Trust-Based Selection of Sources

At this point, we know how to compute trust and uncertainty values and how to use
them to reduce the overhead produced by the challenges. It remains to be shown,
how these values can be used in the selection of future interaction partners. This
decision is an important step in scenarios such as web service selection, worker
selection in volunteer computing, etc.

4.2.4.1. Approach

The main problem that we face here is the explore vs. exploit dilemma described in
Section 4.1.2.4. One approach to this problem is “Boltzmann exploration” [113]. In
this approach, a certain decision d is chosen with a probability that is proportional
to the estimated value of the decision Vd:

pB(d) =
eB·Vd

∑i eB·Vdi
, (4.21)

where d is the decision under consideration, Vdi is the estimated value of decision di,
and B ≥ 0 is a parameter that we call the “Boltzmann parameter” (usually called the
“temperature”). The greater the Boltzmann parameter is, the more impact the value
of the decision has on the probability pB. As B approaches zero, the probabilities
of different decisions become more and more uniform. Initially, when the expected
values of a decision are still very uncertain, a low B, which can then be increased
over time, is reasonable.

The Boltzmann exploration would be suitable for our purposes if we had an es-
timate for how good the choice of a certain information source is. Fortunately, the
trust in a source accounts both for his attitude and his competence, and thus is a
good indicator of the value of choosing this source. Let Ta denote the value that
combines trust value and uncertainty for an information provider a, as defined by
eq. (4.15). Then, the next request is made to an information provider a with the
following probability:

pB(a) =
eB·Ta

∑i eB·Ti
. (4.22)

Note that the combined value Ta does not distinguish between the two cases of (1)
high trust but also high uncertainty, and (2) low trust but low uncertainty. The
source in the second case is strongly believed to be untrustworthy, and so, it should
be selected with a lower probability than the source in the first case, as long as the
system explores a lot. A way to account for this would be to compute the com-
bined trust value T by weighting the uncertainty with a function of the Boltzmann
parameter (compare to eq. (4.15)):

T = ṫ · (1− B
Bmax

· u̇) , (4.23)

82

4.2. Evidence-Based Trust in Information Sources

where Bmax is the maximal Boltzmann parameter used by the system. This extension
reduced the impact of the uncertainty on the combined trust value as long as the
Boltzmann parameter is low, i.e., the system explores a lot. In our simulations, we
do not consider this extension and leave its evaluation subject to further work.

Multiple Selection In a scenario like volunteer computing, not just a single worker
is selected at a time, but a set of workers. This can be done by applying the Boltz-
mann exploration to the set of remaining workers after each selection. A more ef-
ficient but equivalent approach is to successively select workers with probability as
above, while ignoring multiple selections of the same worker, until enough workers
have been selected.

Blacklisting The idea of blacklisting is to mark sources that are thought to be un-
trustworthy, and never to consider them again in the future. The danger of this
is that honest information sources might be blacklisted erroneously. To avoid this
problem, we propose to mark them only if both the trust value and the uncertainty
are low enough. This is reasonable, because a low uncertainty value signifies that
enough evidence has been amassed to back the trust value. This would certainly
reduce the number of false positives, i.e., the number of blacklisted honest sources.
On the other hand, it would probably increase the number of false negatives – the
untrustworthy sources that are not blacklisted. To determine good thresholds for
this decision is outside the scope of the thesis, but would be an interesting direction
for further research.

4.2.4.2. Evaluation

The trust model is now equipped with the capability of selecting one out of a set of
potential information sources. This introduces more dynamics into the application of
the model and makes its evaluation much more complex compared to the evaluation
against a fixed strategy as in Section 4.2.2.1. In the following, we first discuss the
effectiveness of a whitewashing attack. Then, we show by means of simulation the
impact of different settings of source types and parameters on the performance of
the trust model with selection. The objective is that in the long run the model will
tend to select trustworthy sources only.

Whitewashing Attacks Whitewashing attacks are effective if a source can become
more attractive by changing its identity. Our initial trust value of 0.5 gives an in-
centive to renew an identity only if the trustworthiness has fallen below 0.5. Now,
the higher the Boltzmann parameter B is set, and the more sources with higher trust
values are already known, the lower is the probability that a source with a trust
value of 0.5 will be reconsidered. Therefore, whitewashing attacks are especially in-
effective in scenarios where the usual error rate is considerably lower than 0.5; in
volunteer computing it is for instance typically below 0.0355 [88]. Then, at some

83

4.2. Evidence-Based Trust in Information Sources

point a high number of sources with a higher trust value will be known, making it
hard for newcomer information sources to gain attention from a trustor. If B is very
low, the selection procedure takes less account of the trust value; however, there is
then also no incentive to reset it to 0.5.

Impact of Sybil Attack By creating many fake identities, an attacker can increase
the probability that these are selected in the phase when the Boltzmann exploration
tends to explore. These false identities can provide information with relatively high
error rates, and yet, because they are numerous, the probability that some of them
will be selected in a more exploit-oriented phase is high. This is later confirmed by
our experimental findings for the tuning of the trust model (Sect. 4.3.3.4). There we
found that the higher the fraction of attackers, the more aggressively can they define
their attack strategies, because the less they have to compete with honest sources.
This implies that a high probability of a Sybil attack should be countered by a longer
exploration phase.

Experiments We ran simulations where the requester used the Boltzmann explo-
ration approach to select an information source. The Boltzmann parameter was
initially set to 1 and incremented by 0.1 or 0.5 after each request; this increase is de-
noted by B+. We considered two different scenarios (see Sect. 4.2.2.1 and Sect. 4.2.2.2
for the descriptions of the source types):

Scenario 1 This scenario aims to show how quickly trustworthy sources can be rec-
ognized. To this end, the population of sources consisted of a majority of
trustworthy sources (60%), and a mixture of incompetent or malicious sources:
20% sources with error rate ρ = 0.1, 10% with ρ = 0.2, 5% repetitive cheaters
and 5% flicker sources.

Scenario 2 This scenario describes the case where an error rate of ρ = 0.1 is com-
mon, and thus it becomes harder to identify malicious sources. A majority of
sources had error rate ρ = 0.1 (70%); a smaller fraction had a higher error rate
of ρ = 0.2 (20%), and 10% were repetitive cheaters. We did not consider flicker
sources, because the first scenario had already revealed that these are easily
recognized and ignored. Note that repetitive cheaters have an intermediate
error rate of just ρ = 0.00221, which requires that they are more powerful than
the most competent honest sources in this scenario, making it a challenging
scenario for the trust model.

The simulations were repeated 213 times and average values were computed to give
statistically significant results. The results are shown in Figure 4.10; the curves show
the average of how often the respective source type has been selected at each point in
time. In scenario 1, the model selects more and more trustworthy sources over time.
While the sources with error rates ρ = 0.1 and ρ = 0.5 were filtered out at all times,

84

4.2. Evidence-Based Trust in Information Sources

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

fr
ac

tio
n

of
 s

ou
rc

e
ty

pe

time (requests)

flicker source
repetitive cheater

ρ=0.2
ρ=0.1

trustworthy

(a) Scenario 1, B+ = 0.1.

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

fr
ac

tio
n

of
 s

ou
rc

e
ty

pe

time (requests)

flicker source
repetitive cheater

ρ=0.2
ρ=0.1

trustworthy

(b) Scenario 1, B+ = 0.5.

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

fr
ac

tio
n

of
 s

ou
rc

e
ty

pe

time (requests)

repetitive cheater
ρ=0.2
ρ=0.1

(c) Scenario 2, B+ = 0.1.

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

fr
ac

tio
n

of
 s

ou
rc

e
ty

pe

time (requests)

repetitive cheater
ρ=0.2
ρ=0.1

(d) Scenario 2, B+ = 0.5.

Figure 4.10.: Fractions of selected source types (m = n = 10, ε = 1
12 , (wi)i = (1, 3, 6)).

the repetitive cheaters were able to increase their importance for a certain time. This
is because the repetitive cheater first increases its trust value by pretending to be
trustworthy, and so delays being perceived untrustworthy. Still, at some point, it
will be sidelined. For B+ = 0.5, the sidelining of untrustworthy sources happens
earlier. This can be explained by the fact that the trust value increases in importance
more quickly for the selection. Similarly in scenario 2, the repetitive cheaters succeed
in increasing their frequency of selection for a certain time. This works better than
in scenario 1, because for the first ten interactions, their error rate is much lower
than that of their best competitors (0.00221 � 0.1). However, at some point, which
again is earlier in time for B+ = 0.5, the trust value of most repetitive cheaters has
dropped and so other sources start to regain importance, and finally to dominate
repetitive cheaters.

The cumulative error of the estimate ṫW3 is shown in Figure 4.11. For scenario 1,
the increase in the sum of estimation errors decreases less over time. This is due to
the cumulative fading in of trustworthy sources, and fading out of other sources. For
scenario 2, the sum of errors evidently lies above the sum of errors for scenario 1,

85

4.3. Tuning Evidence-Based Trust Models

0

2

4

6

8

10

12

14

16

18

50 100 150 200 250

su
m

 o
f

er
ro

rs

time (requests)

Scenario 1, B+=0.1
Scenario 1, B+=0.5
Scenario 2, B+=0.1
Scenario 2, B+=0.5

Figure 4.11.: Errors in error estimates ṫW3 (sum).

because there are no trustworthy sources with a very low error rate; this can be seen
in Table 4.2 on page 77. A similar reason explains why a higher B+ causes higher
errors in the long run: The estimation error for sources with ρ = 0.1 is higher than
that for repetitive cheaters (again, see Table 4.2), and repetitive cheaters are earlier
faded out for higher B+. In fact, this shows that in this scenario a higher tolerance
factor ε would have been wise, because it would allow the trust model to accumulate
more evidence for sources with higher error rates, and thus produce more accurate
error rate estimates for them.

To summarize, the trust model is capable of increasingly selecting trustworthy
sources. How fast the trust model fades out untrustworthy sources depends on
several factors; amongst others on the composition of source types and in particular
on the trust model parameters such as the Boltzmann parameter or the tolerance
factor. However, given that it is not clear what strategies malicious sources will use,
it is hard to know what an optimal parameter setting of the trust model is. Therefore,
we propose in the following a procedure that aims to find optimal parameter settings
for evidence-based trust models.

4.3. Tuning Evidence-Based Trust Models

In the literature, it is often left open how systematically to find suitable configura-
tions for the proposed trust models. The effectiveness of a proposed trust model
is usually evaluated for specific parameter settings (configurations) of the model.
Although such an evaluation can show how well the model works for these specific
configurations, the evaluation does not tell us whether the model could perform
better if the configuration were improved. Consequently, methods for automatically
optimizing the parameters of trust models are necessary. The problem can be for-
mulated as finding a configuration for the trust model, from a finite set of possible
configurations that yields the highest expected payoff. In the following, we present

86

4.3. Tuning Evidence-Based Trust Models

a generic approach to this problem.

Our Approach The idea presented here is to consider the deployment of a trust
model as a game (for an introduction to game theory see [53]). By applying a game-
theoretic solution concept, one can identify the configuration of the trust model
which yields the highest expected utility to the trustor. However, this requires know-
ing the strategy a rational attacker is most likely to use against a given trust model
configuration. In order to search for such strategies, we use a genetic algorithm [63].
To provide a proof of concept, we apply this approach to the trust-model presented
in Section 4.2.

4.3.1. Trust Model Deployment as Game

We model the deployment of a trust model as a normal-form game of the trustor
against a set of opponents, the potential trustees. An opponent is a service provider
that is either trustworthy, or malicious, in which case we will refer to it as an “at-
tacker”. Let such a game consist of a sequence of rounds. In each round, the
trustor selects an opponent and requests some service τ. If the selected opponent
is trustworthy, he acts in a predefined way (in our case for instance as defined in
Sect. 4.2.2.1). If the opponent is an attacker, he can respond with some action ψ
chosen from a possibly infinite set of actions Ψ.

Let the finite set ST contain all possible configurations of the trust model under
consideration;6 a strategy sT ∈ ST determines for any given game history how the
trustor decides which service τ to request from which opponent in the next round.
Analogously, let the possibly infinite strategy space SA of an attacker contain all
attack strategies that can be deployed against the considered trust model; a strategy
sA ∈ SA describes which action ψ an attacker will choose for a given game history
and a requested service τ. We also call sA an attack strategy.

For each pair (τ, ψ), two functions UT and UA define, for the trustor and the at-
tacker respectively, the real-valued utilities for a single round in which the trustor
requests τ, and the opponent responds with ψ. Another utility function UT :
ST × SA 7→ R defines the expected utility of the trustor for an entire game. Anal-
ogously, a function UA : ST × SA 7→ R defines the expected utility of an attacker
for an entire game. Table 4.4 illustrates the payoff matrix containing the expected
utilities for an entire game. Rows represent strategies of the trustor (trust model
configurations), and columns represent attack strategies. We write (ST, SA)-game for
a game where a trustor and an attacker can choose from strategy spaces ST and SA
respectively. Analogously, we write (sT, sA)-game for a game, where a trustor and an
attacker play strategies sT and sA respectively.

6To ensure that ST is finite, parameters of the trust model have to be bound if necessary, and
continuous parameters have to be discretized.

87

4.3. Tuning Evidence-Based Trust Models

Table 4.4.: Payoff matrix for an entire game.

attack strategies
sA1 sA2 . . .

trust model
configurations

sT1
UT(sT1, sA1), UT(sT1, sA2), . . .
UA(sT1, sA1) UA(sT1, sA2)

...
...

... · · ·

sTn
UT(sTn, sA1), UT(sTn, sA2), . . .
UA(sTn, sA1) UA(sTn, sA2)

4.3.1.1. Solution Concept

If there is a procedure that finds an optimal trust model configuration, then a so-
phisticated attacker could run this procedure and thus would know the optimal
trust model configuration. Also to be in accordance with Kerckhoff’s principle [83], we
should therefore assume that an attacker knows the trust model configuration that
will be used.

Hence, we can analyze an (ST, SA)-game in the form of a “Stackelberg competi-
tion” (e.g., see [53, pp. 67–69]). In a Stackelberg competition, the first player, the
“leader”, chooses his strategy first. The second player, the “follower”, can then
choose his strategy with the knowledge of the leader’s strategy. In our case, the
trustor represents the leader, who has to choose a trust model configuration sT ∈ ST
as his strategy. The attacker takes the role of the follower and can choose, knowing
the trust model configuration sT, a strategy sA ∈ SA that produces the most favor-
able outcome for him; such an optimal attack strategy is called a “best response” to
the trust model configuration sT.

Stackelberg competitions originally address the situation where two firms com-
pete by varying output levels, and so the payoffs of leader and follower are usually
linked linearly. In contrast, in our case, we consider all kinds of payoff matrices.
As we will see, a similar reasoning to that of the original Stackelberg competition is
possible.

4.3.1.2. The Stackelberg* Outcome

In what follows, we assume perfect rationality of the players: They know how to max-
imize their utilities and act accordingly. Since there might be several best responses
to a trust model configuration, we assume the worst case for the trustor: The attacker
chooses from the set of best responses the one that minimizes the expected utility of
the trustor. This is reflected by the following notation.

Notation 4.1. For an (ST, SA)-game and a trust model configuration sT ∈ ST, we use
br*(sT) ∈ SA to denote a best response to strategy sT that causes the worst utility for the
trustor among all best responses to sT (if there are several). Formally, for any sT and br*(sT)

88

4.3. Tuning Evidence-Based Trust Models

it holds:

∀sA ∈ SA :
[
UA(sT, sA) ≤ UA(sT, br*(sT))

]
(4.24)

∧
[
UA(sT, sA) = UA(sT, br*(sT)) (4.25)

⇒ UT(sT, sA) ≥ UT(sT, br*(sT))
]

. (4.26)

Using this notation, we define a solution concept as follows:

Definition 4.2 (Stackelberg* outcome). Assuming a rational attacker in an (ST, SA)-
game, strategy pair (sT, br*(sT)) is a Stackelberg* outcome if there is no other strategy
s′T ∈ ST for which the following holds:

UT(s′T, br*(s′T)) > UT(sT, br*(sT)) . (4.27)

According to this solution concept, a leader will choose a configuration sT that
maximizes his utility knowing that a rational follower’s strategy is to play br*(sT).
This solution concept actually corresponds with the Stackelberg outcome [53], apart
from the fact that the former requires the follower to minimize the leader’s utility in
the second step.

Theorem 4.2. A Stackelberg* outcome constitutes a Nash equilibrium.

To prove Theorem 4.2, we have to show that for a Stackelberg* outcome, players
cannot get greater utilities by unilaterally changing their strategy.

Proof. Let (sT, br*(sT)) ∈ ST × SA be a Stackelberg* outcome. The trustor will not
change his strategy to some different s′T ∈ ST because he knows that the attacker
would then play br*(s′T) which would not cause a higher utility for the trustor –
because following Def. 4.2 we have:

UT(sT, br*(sT)) ≥ UT(s′T, br*(s′T)) .

The attacker also has no incentive to play a different strategy sA ∈ SA with sA 6=
br*(sT), because his utility could not increase (see eq. (4.24)).

4.3.2. Tuning Procedure

To find an optimal trust model configuration, we have to find a Stackelberg* out-
come. This is because it maximizes the trustor’s expected utility under the assump-
tion of a rational attacker. Consider a restricted payoff matrix as shown in Table 4.5.
As before, rows represent the strategies of the trustor, i.e., trust model configura-
tions. The only column now represents the attacker’s best responses br* to the cor-
responding trust model configuration. Every row, in which the expected utility for
the trustor is at least as high as in all other rows, provides a Stackelberg* outcome.
So, we choose the trust model configuration from such a row. If there are several
such rows, we randomly pick one.

89

4.3. Tuning Evidence-Based Trust Models

Table 4.5.: Restricted payoff matrix for an entire game.

best response
br*(sTi)

trust model
configurations

sT1
UT(sT1, br*(sT1)),
UA(sT1, br*(sT1))

...
...

sTn
UT(sTn, br*(sTn)),
UA(sTn, br*(sTn))

4.3.2.1. Finding Best Responses

To construct the restricted payoff matrix as illustrated in Table 4.5, we have to know
the attacker’s best response to each trust model configuration. This can be done by
searching for it in the search space consisting of possible attack strategies.

Attack Strategy Search Space Let Ψ be the set of all possible actions ψ an attacker
can take in a single interaction. Then the full attack strategy space for a game with
r rounds is given by Ψr. For a reasonable number of rounds (e.g., r = 50), this
search space is already vast, even if an attacker can only take two different actions.
To reduce the size of the search space, we take another approach: We construct the
search space from a set of basic strategies, each of which is parameterized with a finite
set of possibly continuous parameters. In Section 4.3.3.2, we define these basic attack
strategies for a concrete application scenario. The following example illustrates how
a basic attack strategy can be described:

Example 4.2. Let ρ ∈ [0, 1] be a continuous and i ∈N be a discrete parameter; in every ith
round, the attacker returns incorrect information with error rate ρ, and otherwise behaves in
a trustworthy manner.

The drawback of this approach is that one might neglect important basic attack
strategies. In other words, the attack strategy search space is not complete. As
a consequence, the parameter settings selected by our tuning procedure are not
guaranteed to be optimal (even if a search algorithm that guarantees finding a global
optimum is used). However, we clearly need to restrict the search space, because
a search would become infeasible otherwise. The more comprehensive the set of
strategies is, and the more sophisticated the strategies are, the more likely it contains
the actual best response. Additionally, by adding only a selection of attacks to the
search space, a trust model can be optimized specifically against these attacks. In
any case, the resulting space can still be very large, and so an appropriate search
algorithm has to be selected.

90

4.3. Tuning Evidence-Based Trust Models

Search Algorithm Because of the size of the search space, an exhaustive search or
uninformed search [129] is not suitable. Instead, we propose to use a genetic algo-
rithm, because it can be flexibly adapted to very different search spaces. Actually,
depending on the attack strategy space, the fitness function can be nonlinear and
even partially non-continuous – if this is taken to extremes though, even a genetic
algorithm will struggle. Furthermore, the structure of genetic algorithms makes
them good candidates for parallelization. And finally, they can handle continuous
parameters in the attack strategies. However, there are also arguments against ge-
netic algorithms in our case. Because a genetic algorithm is a local search method it
does not guarantee convergence to global optima. So, the performance of the algo-
rithm depends to a certain extent on its configuration. However, the results that we
describe later provide evidence that we succeeded in tuning the genetic algorithm
sufficiently.

The Genetic Algorithm For our purposes, we specify the different components of
the genetic algorithm7 as follows:

Individuals The individuals represent the attackers. An individual is thus defined
by a specific basic attack strategy parameterized in a certain way. At the begin-
ning of the algorithm each individual is initialized with a random basic attack
strategy with random parameters.

Fitness Function The fitness of an individual using a certain attack strategy sA
(against a trust model with configuration sT) is given by the utility function
UA(sT, sA). The value of the utility function is determined by averaging over
the utilities obtained in a statistically significant number of simulated (sT, sA)-
games.

Selection An individual is selected for reproduction with a probability that is pro-
portional to the individual’s fitness. Parameter S defines the selection pressure,
which specifies the impact of differences in the fitness on the resulting selection
probabilities. To be more specific, if I is the population of individuals and f (i)
is the fitness of individual i ∈ I, then we select i for reproduction by means of
Boltzmann exploration (see also Sect. 4.2.4):

eS f (i)

∑j∈I eS f (j)
. (4.28)

Reproduction Given that two individuals have been selected for reproduction, a new
individual is created that takes a part of the parameters from the “mother” and
the other part from the “father”. This affects the parameters of the attack strat-
egy as well as the basic attack strategy used. How this is done in a reasonable

7See Section 2.3.8 for a quick introduction to genetic algorithms, and helpful references to the liter-
ature.

91

4.3. Tuning Evidence-Based Trust Models

way depends on the form of the attack strategies. In our algorithm, mother
and father are not necessarily part of the subsequent generation. However, a
certain number of individuals with the highest fitness is always passed on to
the next generation; this is called “elitism” and ensures that good solutions are
not lost. The size of the population stays constant.

Mutation For a certain fraction of the individuals that result from reproduction, one
or more parameters and/or the basic attack strategy are mutated, i.e., changed
in a defined way. To a continuous parameter one can for instance add a random
number following a Gaussian distribution. Again, this depends on the form of
the attack strategies.

Termination The algorithm terminates if either of the following happens:

• the fitness of the best individuals of a certain number of consecutive gen-
erations does not change significantly,

• a certain number of generations has been reached. In our case, where the
fitness function is computed by means of simulation, this suggests that
the average utilities are fluctuating too much. As a countermeasure the
number of games averaged over should be increased.

Performance of Genetic Algorithm The performance of the genetic algorithm pro-
posed above suffers from the expensive computation of the fitness function. This
is due to the fact that a game has to be repeated often enough to make the results
statistically significant. Nevertheless, genetic algorithms are well-suited to paral-
lel execution, which can speed up the overall computation considerably. Also, the
set of trust model configurations can be pruned by removing implausible settings.
Alternatively, the procedure can be run several times, starting with a small set of con-
sidered trust model parameter settings, and iteratively making it more fine-grained
in promising areas.

4.3.2.2. On the Applicability of Game-Theory

In our case, the strategies of the trustor are concrete trust model configurations (see
Sect. 4.3.1). Thus, our solution concept yields an optimized but fixed trust model
configuration. In game-theoretic terms this means that the trustor basically plays a
“pure strategy”. We believe that to compute the payoff for a “mixed strategy”, i.e.,
a strategy where the trustor uses different configurations with certain probabilities,
would hardly be feasible in practice. The reason for this would be the complex dy-
namics in a game, e.g., caused by the honest players and the dynamic adaptation of
the attackers to the changes in the trust model configuration. This raises the ques-
tion of whether game theory is the right approach for handling this complexity. We
rather suggest that a configuration determined by a procedure like ours serves as a
starting configuration, and that the trust model should be equipped with capabilities
to adapt itself at runtime according to feedback it gets from its environment.

92

4.3. Tuning Evidence-Based Trust Models

4.3.3. Application

We apply the tuning procedure to an exemplary volunteer computing scenario in a
round-based manner. In this scenario, a master assigns work units to workers, which
are expected to return the correct result. Because workers may return incorrect
results, the master wants to use the trust model with selection presented in this
chapter. The master will accept a worker’s reply if and only if the error rate is
estimated to be below a threshold e set to 0.1 (the procedure could also be run for
any other threshold). After having been assigned a work unit, a worker is busy for
a certain time and cannot be selected for several rounds. For our simulations, we set
this number of rounds to a small value of 10, so that in our simulations consisting of
28 rounds, the same malicious worker could be selected many times; this means that
the utility of an attacker is determined more by its strategy than by chance, which
results in a more efficient and reliable optimization of the attack strategies.

The trust model can be parameterized by the increase in the Boltzmann parameter
B, tolerance factor ε, and the weights wi (see Sect. 4.2.4 and Sect. 4.2.1.2). The more
parameters of the trust model and the more fractions fa are considered, the more
precisely can the final expected utility of the master be computed. To keep the
computational efforts reasonable in our case, we consider the following subset of
possible trust model parameters:

• B+ ∈ {0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2.5, 5}

• ε ∈ { 1
10 , 1

4 , 1
2}

• W1 = (1), W2 = (0.8, 0.2), W3 = (0.7, 0.2, 0.1)

For the simulations, we varied the fraction of workers with malicious intent, denoted
by fa. We ran the simulation with four different fractions fa, namely 0, 0.1, 0.5 and
0.9. The final expected utility of the master was then computed as a weighted aver-
age over the expected utilities for different fa. This implicitly assumes that attackers
know the fraction of attackers fa in order to choose their best response, because
we searched for their best attack strategy for the different fractions independently.
Alternatively, one could vary fa during the execution of the genetic algorithm, in
order to optimize the attackers’ strategies for all possible fractions fa. However, the
fitness function would then change for every population, possibly in contrary ways,
making it much harder for the genetic algorithm to converge. Therefore, we chose
the first approach.

What still needs to be defined at this point are the utility function of the master,
the utility function of the malicious workers, and their basic attack strategies.

4.3.3.1. Utility Functions

For both attacker and master, we have to define their utility for a single round, in
which the master requests τ and the worker takes action ψ.

93

4.3. Tuning Evidence-Based Trust Models

Attacker If the reply of an attacker is accepted, he gets credit for m + n work units;
additionally, he has saved resources by returning x + y faked results, which
provide utility as well. If the reply is rejected, the attacker has unnecessarily
computed m− x plus n− y work units, which results in the negative utility of
−(m− x)− (n− y) = x−m+ y− n. These two cases define the utility function
for the attacker:

UA(τ, ψ) =

{
m + x + n + y, if ṫW3 ≤ e
x−m + y− n if ṫW3 > e

(4.29)

Master For the master, there are three different cases:

UT(τ, ψ) =

m− x, if ṫW3 ≤ e and x

m ≤ e
m− x− (|e− x

m | ·m) if ṫW3 ≤ e and x
m > e

−m, if ṫW3 > e
(4.30)

In the first case, the master accepts the reply, and the reply’s error rate is indeed
smaller than e: We define the master’s utility by the number of correct results
in M. If the master accepts the reply although its error rate is higher than e,
we additionally subtract the number of errors above the threshold. In the case
that he has to reject the request, we define the utility to be the negative number
of real requests, because these have to be requested again. Note that if only
correct results are returned to the master within a game, that is, in the best case,
its average utility per round is m. The different terms could also be weighted
with different cost parameters, e.g., the error in the second case could be more
costly in practice than the number of lost replies in the third case. However,
since we have no concrete reasons to do otherwise, we set all costs to 1.

4.3.3.2. Attack Strategies

The set of actions Ψ of an attacker, consists of all possible numbers of incorrect results
to a given number of single requests. More precisely, if a request consists of m + n
single requests, the worker can decide to return one to m + n incorrect requests; this
can also be expressed by the fraction of incorrect results within the total number of
results. Attack strategies can then be described by sequences of these fractions. We
modeled six basic attack strategies, each of which was parameterized with up to 2
parameters p1 ∈ [0, 1] and p2 ∈ N. Figure 4.12 illustrates the attack strategies with
different parameters for each, and illustrates for two of the strategies the effect of
the parameter(s). The attack strategies are defined as follows:

Random For each interaction draw the fraction of errors randomly from a uniform
distribution over the interval [0, p1].

Constant Always return a fraction of errors of p1.

94

4.3. Tuning Evidence-Based Trust Models

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

fr
ac

tio
n

of
 e

rr
or

s

time (requests)

Random
Const

Rep. cheater

p
1

(a) Random, Constant and Repetitive cheater.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

time (requests)

Sine
Square
Saw

p
1

p
2

(b) Sine, Square and Saw.

Figure 4.12.: Attack strategies that form the attack strategy search space.

Repetitive cheater (As defined in Sect. 4.2.2.1) Repeatedly pretend to be a honest
worker for a number of p2 rounds, then return a response with error rate p1.

Sine For the ith interaction, choose the following fraction of errors: p1 · (0.5 + 0.5 ·
sinp2(i)) , where p2 parameterizes the frequency of the sine function. The
0.5-constants normalize the sine function into [0, 1].

Square Choose a fraction of errors similar to Sine: p1 · (0.5− 0.5 · sgn(sinp2(i))). For
the first interaction pretend to be honest.

Saw For the ith interaction, choose fraction of errors p1 · (i mod p2
p2

).

We modeled the basic strategies s ∈ {1, . . . , 6} as another parameter that the attacker
had to choose. So, the genetic algorithm optimized the pair (s, p1, p2) in order to
maximize the attacker’s utility against a given trust model configuration.

4.3.3.3. Genetic Algorithm Implementation

To have a reasonably high significance, the fitness function was computed by taking
the average utilities of master and attackers over 29 games, each consisting of 28

rounds. The population consisted of 27 individuals, which, with a selection pressure
of S = 20 and a number of 13 mutations, resulted in a fast convergence. The search
was terminated if either the fitness ceased to improve by an amount of at least 0.005
for a sequence of four rounds, or if a maximum of 24 rounds was reached.

An individual represented a master with a certain trust model configuration on
the one side, and a set of workers on the other side. The number of workers was
kept small (50) to ensure a high number of interactions within a relatively small
number of rounds. A certain ratio of workers was given a malicious intent, and all
of them followed the same attack strategy, which was changed through mutation
and reproduction with other individuals.

95

4.3. Tuning Evidence-Based Trust Models

0 1 2 3 4 5
B+

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

9

9.2

9.4

9.6

9.8

10

(a) fa = 0.

0 1 2 3 4 5
B+

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

9

9.2

9.4

9.6

9.8

10

(b) fa = 0.1.

Figure 4.13.: Expected utilities of the master against optimized attack strategies (W1).

Reproduction Reproduction is implemented by selecting two individuals and cre-
ating a new one, repeatedly until enough individuals are produced. With a
probability of 0.2 parameters p1 and p2 were taken from the same parent, and
from different parents otherwise. The attack strategy s is selected with prob-
ability 0.75 from the parent with the higher fitness, and from the other parent
otherwise. Elitism is implemented by passing the two best individuals on to
the next generation without modifying them.

Mutation Mutation changes one parameter at a time: parameter p1 and p2 with
probability 0.4 each, and attack strategy s otherwise. To p1 or p2 a value is
added that is taken from a Gaussian distribution with mean 0 and standard
deviation 0.05; if the value falls outside of [0, 1], it is chosen from a uniform
distribution over [0, 1]. If mutation changes the attack strategy, this is randomly
picked from {1, . . . , 6}.

4.3.3.4. Results

The results are shown in Figures 4.13 and 4.14; the results are interpolated with ten
values between each pair of measurements. The plots show the expected utilities UT
of the master, divided by the number of rounds; since we are using m = 10, the high-
est reachable expected utility is UT = 10. In each plot, two of the three considered
trust model parameters are presented: The x-axis gives increase of the Boltzmann
parameter (B+), and the y-axis the tolerance factor (ε). The different weights W1, W2
and W3 led to similar results, and are therefore relegated to Appendix D.

Lower Fractions of Attackers Figure 4.13 shows that for a low fraction of attackers,
the utility is generally as high as if there are no attackers at all. These results suggest

96

4.3. Tuning Evidence-Based Trust Models

0 1 2 3 4 5
B+

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

9

9.2

9.4

9.6

9.8

10

(a) fa = 0.5.

0 1 2 3 4 5
B+

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

9

9.2

9.4

9.6

9.8

10

(b) fa = 0.9.

Figure 4.14.: Expected utilities of the master against optimized attack strategies (W1).

that malicious workers are forced to return mainly correct results, because other-
wise they could not compete with the trustworthy workers. Actually, for certain
parameter settings the utilities of the master are even better in the scenarios with
few malicious workers; where this is the case can be seen better in Appendix D,
where a table lists numeric values for all the utilities of the master. The reason for
this is that when there are only few attackers, these need to be even more reliable
than trustworthy workers in order to be competitive enough to be selected. How-
ever, this is only the case if attackers have full control over their error rate, as we
have assumedt. Even if this is not the case in practice, attackers will apparently not
increase their profit by performing worse than trustworthy workers.

Higher Fractions of Attackers For higher fractions of attackers (Fig. 4.14), attackers
have a better chance of being selected. This allows them to return more incorrect
results. As a consequence, the master’s utility becomes smaller if it is not able to
detect malicious workers. For fa = 0.5, the trust model performs badly if both
the tolerance factor and the increase in the Boltzmann parameter are high. In the
extreme case of fa = 0.9, the impact of a bad configuration becomes even more
evident. A small tolerance factor seems to be advisable here. The reason for a small
tolerance factor is that otherwise it is probable that many incorrect results are getting
accepted, because there are many malicious sources that return incorrect results. If
the Boltzmann parameter is too high, the model starts to exploit what it has learned
about the sources too early: before it has found the trustworthy sources. So, when
there are many malicious sources, the exploration phase should take longer in order
to find the few trustworthy sources.

97

4.3. Tuning Evidence-Based Trust Models

0 1 2 3 4 5
B+

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

9.6

9.65

9.7

9.75

9.8

9.85

9.9

9.95

10

Figure 4.15.: Expected utilities of the master combined for different scenarios (W1).

Table 4.6.: Excerpt of restricted payoff matrix, utilities averaged over several settings.

sT U ′T(sT, br*(sT))
B+ ε W

0.0 1
10 W1 9.73883

...
...

...
...

1.0 1
4 W1 9.91838

...
...

...
...

5.0 1
2 W3 9.70634

Combination of Results In practice, only one of the scenarios occurs, but at this
point it is not known which one. Therefore, to make the trust model robust against
all scenarios, the master’s utilities from the different scenarios have to be merged.
As mentioned before, we propose to use a weighted average over the utilities, where
the weights8 define how robust the model should be in which scenario. Additionally,
the weights can reflect how probable each scenario is assumed to be. Lower fractions
of attackers seem to be more probable in general. However, due to the possibility of
a Sybil attack (see Sect.2.2.2), high ratios of attackers are still possible. Addressing
these two issues, we accordingly weight the four scenarios fa = (0, 0.1, 0.5, 0.9) with
the weights (0.3, 0.3, 0.2, 0.2) respectively. Figure 4.15 shows the combined expected
utilities; note that a different scale is used for utility to make the structure more clear.
From these values, we can derive a trust model configuration with optimal expected
utility. A tolerance factor of ε = 0.25 and a B+ between 1 and 2 seems to yield the
highest utility for the master. This can be verified by looking at the restricted payoff
matrix as it is illustrated in Table 4.5. An excerpt of this matrix filled with the results

8not to be confused with the weights of the trust model Wi.

98

4.3. Tuning Evidence-Based Trust Models

from the experiments is shown in Table 4.6; U ′ denotes the utility combined from the
different scenarios. In this table the highest expected utility is framed; the optimal
trust model configuration can be read from this row. The complete matrix can be
found in Appendix D.

99

5. Collusion Detection for Redundant
Requesting

In this chapter, we propose an algorithm to detect collusion among malicious information
sources. Colluding information sources can become a problem when replication is used to
ensure correctness of acquired information. The proposed algorithm is a complement to
replication-based schemes for information acquisition. The basic idea of the algorithm is
to measure how similar the information from different information providers has been in the
past, and cluster the sources accordingly; honest sources will form a tight cluster, which
makes it possible to identify colluders.

Organization In Section 5.1, we discuss the problem of collusion in the context of
replication. We detail our model and assumptions in Section 5.2, and propose an
algorithm for collusion detection in Section 5.3. Following this, we first provide a
theoretical analysis of the algorithm in Section 5.4, and then evaluate it experimen-
tally in Section 5.5.

This chapter is related to [147, 146, 152].

5.1. Redundant Requesting and Collusion

“Redundant requesting”, which is also called “replication” or “redundancy”, works
as follows. A requester makes the same request Q to several information sources
redundantly; he applies majority or plurality voting to the set of returned replies
{Ri}i to decide in favor of the information that appears most often. This technique
is for instance used in volunteer computing to check the correctness of returned
results [10, 105], or in P2P systems to eliminate incorrect information (e.g., in [81]).

Redundant requesting is based on the assumption that the different selected sources
are independent from each other; if this is the case, the probability that a majority of
sources returns the same incorrect information becomes in general negligibly small.
However, if the sources collude, this independence assumption is violated; this is
for instance the case if an attacker controls several sources. Then, if a majority of
colluding sources is selected, these can collectively return the same incorrect result,
which will be accepted by the requester. To better understand the significance of this
collusion threat, we have to look at the probability of randomly picking a majority

100

5.1. Redundant Requesting and Collusion

0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5

P
(m

aj
or

ity
 o

f
co

ll
ud

er
s|

k,
 f a
)

fa

k=3
k=5
k=7

Figure 5.1.: Probability of selecting a majority of colluding sources.

of colluders for a vote. Let k be the redundancy level, i.e., the number of sources to
which one request is made redundantly. We only consider odd redundancy levels
to make it less probable to get tie votes; let mk denote the number of sources needed
to form a majority in a vote. Furthermore, let fa denote the fraction of colluding
sources in the population from which the sources are picked. Then, the probability
of picking a majority of colluding sources can be approximated1 as follows:

P(majority of colluders|k, fa) =
k

∑
i=mk

fa
i · (1− fa)

k−i . (5.1)

Figure 5.1 shows the resulting probabilities for different redundancy levels. For
higher redundancy levels, the probability of selecting a majority of colluders by
chance decreases. However, to keep the overhead low, a low redundancy level is
preferable; a common redundancy level in current systems is k = 3 [11]. In addition
to this, against the background of the Sybil attack (see Sect. 2.2.2), high rates of col-
luding sources become more likely to occur in practice. Under these circumstances,
it becomes likely that a majority of colluders will be randomly picked, as can be seen
from the figure.

Against this background, countermeasures against collusion become necessary.
For this reason, we propose an algorithm that detects colluding information sources
in this context of replication with majority/plurality voting. The basic idea is to
cluster the information sources based on how similar the information that they have
returned in the past has been. The honest sources, i.e., those that do not collude, will
form a tight cluster; in the same way, the set(s) of colluding sources will form tight
clusters. Under the assumption of having less than 50% of colluding sources, the

1This assumes an infinitely large set of sources S . For a finite number of sources, sampling with-
out replacement would need to be considered. However, for our purposes the differences are
negligible.

101

5.2. Model and Assumptions

cluster of honest sources will be the largest, and all sources that do not belong to
this cluster are suspects.

5.2. Model and Assumptions

In order to obtain one piece of information, the same request is made redundantly
to k information sources. We call such a set of sources a vote. For any new vote,
the sources are randomly selected from the overall set of all available sources; this
set is denoted by S . For the sake of simplicity, we assume that this set S is static
over time, i.e., sources do not enter or leave the system. We discuss the impact of
such dynamics later in Section 6.3.1. Furthermore, we allow any fraction of colluding
sources in S smaller than 0.5. This assumption is needed later on for deciding which
clusters contain the malicious and which contain the honest sources.

5.2.1. Plurality Voting

In our model of redundant requesting, plurality voting is applied in order to deter-
mine which reply is accepted as correct: A piece of information is accepted iff it has
been returned by more sources than any other piece of information. Thus, a piece
of information can also be accepted if it does not have an absolute majority. On this
note, we define plurality and its counterpart minority as follows:

Definition 5.1 (Plurality and minority). The plurality of a vote is the cardinality of the
strictly largest group of sources that returns identical replies. If there is no such group, then
there is no plurality. All sources that do not form the plurality of the vote, and only those
sources, form the minority.

As stated above, only odd redundancy levels k are considered, in order to reduce
the probability of ties in votes. The number of nodes needed to get an absolute
majority in a vote is then given by mk =

⌈
k
2

⌉
.

In practice, honest sources also may return incorrect information, even if with
a very small probability, denoted by error rate ρ. To account for this, we model
honest sources with an error rate of ρ = 0.00221 with reference to [88]. We therefore
distinguish between correct and incorrect honest sources in a vote. For the sake
of simplicity, we make the assumption that if the replies of two honest sources are
both incorrect, then they are different. In our theoretical analysis, this assumption
makes the detection of colluders harder because it decreases the correlation among
honest sources. As a consequence, the results of the analysis would be better if
the assumption were not made. In other words, honest sources with correlated
error rates are not a problem for our collusion detection mechanism. To redundant
requesting however such sources appear like colluders and so would be a problem.
In volunteer computing systems, the correlation of errors can for instance be caused
by several honest workers using the same type of faulty CPU (e.g., remember the

102

5.2. Model and Assumptions

Pentium FDIV bug [104]). However, Kondo et al. [88] showed that failures of hosts
are not correlated in general.

5.2.2. Attacker models

We assume that colluding sources can efficiently communicate with each other and
can rapidly reach collective decisions. This assumption is based on the Sybil attack
scenario in which a single attacker creates several identities and makes them appear
as distinct individuals. Therefore, colluders can decide collectively which wrong
result to return. We consider the following types of colluders:

Unconditional colluders (UC) Try always to collude, i.e., each time a colluder is
involved in a vote, he returns the same incorrect result as other colluders in
this vote.

Conditional colluders (CC) Collude only if they know that at least an absolute ma-
jority of sources in the vote are colluders. Otherwise they return the correct
information.

Unconditional camouflage colluders (UCm) Decide with a certain probability pcam
collectively for each vote whether to collude.

Conditional camouflage colluders (CCm) Decide with a certain probability pcam col-
lectively for each vote in which they form the majority, whether to collude. In
all other votes they return the correct information.

Unconditional colluders will be in the minority of a vote whenever there are more
correct honest sources in that vote than colluders. Conditional colluders only cheat if
they know for sure that they will be in the majority. Therefore, conditional colluders
are basically as effective as unconditional colluders. But at the same time, they are
harder to detect, because in all votes where they most probably would not succeed
in cheating, they behave as if they were honest. However, conditional collusion re-
quires the colluders to know the redundancy level k: In general, colluders can only
know how many other colluders are in the vote, but not how many honest sources
are involved; hence, they know whether they would collude successfully only if they
know the number of sources in the vote, i.e., the redundancy level. Thus, CC and UC
are sophisticated strategies for the scenarios where attackers know k and where they
do not know k respectively. Via pcam, camouflage colluders can exactly define how
often they want to collude; a lower probability makes it harder for the algorithm to
detect them, but also makes their collusion less effective. Actually, UC and CC are
two special cases of camouflage colluders, namely for pcam = 1. We explicitly de-
fined the two attacker models because they are the most extreme forms of collusion;
however, we need to do the theoretical analysis only for the two camouflage col-
luders. For the sake of completeness, we should mention attacks in which attackers
yield a high correlation to some selected honest sources, in order to build “bridges”

103

5.3. Collusion Detection Algorithm

between the cluster containing the honest sources and the cluster(s) of the malicious
sources. These attacks are not feasible under the assumption that attackers can-
not know the identities of the honest sources involved in a vote, because then they
cannot build such bridges to selected honest sources. This assumption is reasonable,
because the sources are not interacting with each other, and the communication from
the requester to the sources can be secured.

5.3. Collusion Detection Algorithm

Our aim is to identify colluders within a given set of sources S . To this end, we use
a distinctive feature, which we call “correlation”, that reveals the borderline between
the set(s) of colluders and the set of honest sources. This distinctive feature is based
on the following observation.

For attackers, the only effective way to attack a redundant request is to collude,
i.e., to collectively return the same incorrect result. Colluders will succeed in votes
where they hold the plurality. But in such votes, all the honest sources will form
the minority. Now, we can count for each pair of sources how often they have
been together in the same group (plurality/minority), and how often they have been
in opposite groups. As we show later, the counts for a pair of sources provide
statistical evidence about the relation between the two sources, i.e., whether they
are both malicious, both honest or one is malicious and one is honest. We use the
counts to estimate the distinctive feature, namely the correlation. This feature has
the desirable property that, no matter by what collusion strategy, colluders cannot
influence the correlation between pairs of honest sources. Moreover, a colluder can
increase his correlation with an honest source only by withdrawing from collusion.

Definition 5.2 (Correlation). The correlation pc of two information sources A and B is
the conditional probability that, given that A and B are together in a vote, both are in the
same group (plurality/minority) of that vote. More formally this is:

P(A and B are in the same group of a vote|A and B are together in that vote) . (5.2)

From this definition it follows that for a series of n independent votes where both
sources participate, the number of votes in which they are in the same group is
binomially distributed with parameters n and pc.

5.3.1. Estimating Correlation

For a pair of sources, we can count the number of votes where both participate,
denoted by n, and the number of votes where both are in the same group, denoted
by y. Then, following the same derivation as in Section 4.2.1.1, we find that the best
correlation estimate is given by:

p̂c =
y + 1
n + 2

. (5.3)

104

5.3. Collusion Detection Algorithm

0

20

40

60

80

100

0 20 40 60 80 100

so
ur

ce
 j

source i

0

0.2

0.4

0.6

0.8

1

sa
m

pl
e

co
rr

el
at

io
n

(a) UC, 10 votes/pair

0

20

40

60

80

100

0 20 40 60 80 100

so
ur

ce
 j

source i

0

0.2

0.4

0.6

0.8

1

sa
m

pl
e

co
rr

el
at

io
n

(b) CC, 100 votes/pair

Figure 5.2.: Sample collusion matrices (k = 3, |S| = 100).

We can estimate the correlation for each pair of sources from S . This results in
what we call a correlation matrix, a symmetric matrix of size |S|2, containing the
correlations between all pairs of sources. Figure 5.2 shows two example matrices
for the cases UC and CC respectively. The UC-matrix has been computed after
10 votes per pair of sources on average; for the CC-matrix 100 votes have taken
place. In both settings there are 10 colluders, and these have the same indices. The
dark areas indicate low correlations. The rows and columns that contain mostly
low correlations show the colluders, because these correlate much only with other
colluders; therefore only the crossings are bright. This allows us to use clustering to
draw a line between honest sources and colluders. In the UC-case, the borderline is
much more obvious, which suggests that clustering will yield better results in this
case.

5.3.2. Clustering

Intuitively, the correlation between two sources reflects how similarly they “vote”.
This can be helpful to us if it implies something about the similarity in their attitude.
That is, if correlation is high for pairs of colluders and pairs of honest sources, and
low for mixed pairs consisting of one colluder and one honest source. We later show
in Section 5.4 that this is in fact the case. Therefore, we can interpret the correlation
as a measure of similarity. This allows us to cluster the set of sources S based on the
correlation matrix.

For our scenario, we have to deal with the following facts:

• The number of clusters cannot be fixed in advance. This is because if we fixed
the number of clusters to some l, then l− 1 attackers could try to correlate very
little with any other source, so as eventually to form l− 1 different clusters; all

105

5.3. Collusion Detection Algorithm

other attackers would then probably be in the biggest cluster, together with all
the honest sources. Hence, l has to be determined anew for each clustering.

• Inputs to the algorithm are similarities; no points in a Euclidean space are
given.

• The matrix we are dealing with does not contain zero entries, i.e., it is not
sparse.

Many different algorithms for cluster analysis have been proposed in the literature.
There are different classes of such clustering algorithms that can deal with the latter
two facts. One of these classes are the “linkage methods” from the area of “hier-
archical clustering” [78]; in this approach, clusters are build incrementally, and one
can stop for example if the next two clusters to be merged are too far away from
each other (“distance criterion”). Another type of clustering is called “spectral clus-
tering” [164]. Here, a number of clusters l has to be specified; there are approaches
to determine a good l for a given dataset (e.g., see [164]). Alternatively, if the similar-
ity values are normalized to the common correlation interval [−1, 1], one can apply
“correlation clustering” [14, 35], which does not require l to be specified. Finally, the
sources can be interpreted as vertices, and the correlation values as edge weights, in
an undirected graph; then, a “graph clustering” algorithm can be applied (e.g., see
[20]). It is out of the scope of this thesis to discuss which of the numerous clustering
schemes will be the best in our case. Instead, we want to show that there is some
scheme that is able to detect colluders following different collusion strategies.

5.3.3. Algorithm

Algorithm 1 Collusion Detection
1: procedure Detect-Collusion(S ,HS [,P])
2: M← Compute-Correlation-Matrix(HS)
3: {C1, . . . , Ck} ← Cluster(M[, P])
4: Cmax ← max(C1, . . . , Ck) . Select largest cluster
5: S← S \ Cmax . Take all but largest cluster
6: return S . Return suspects
7: end procedure

The collusion detection algorithm is shown in Alg. 1. It takes as inputs: the set of
sources S in form of their IDs, the set HS that contains the voting history of each pair
of sources, i.e., the number n of votes in which both participated, and the number
y of these votes in which they were in the same group (plurality/minority), and
finally an optional parameter for the clustering algorithm P; whether this parameter
P is needed and its form depend on the specific clustering scheme used. With the
voting histories, the algorithm can compute the correlation matrix M (line 2). Based

106

5.4. Theoretical Analysis

honest sources

suspect sources

s5 s6

s3 s4

s2s1

Figure 5.3.: Application of the algorithm to a very small example graph (|S| = 6).

on the correlation matrix, the clustering is performed (line 3). The largest cluster is
presumed to contain the strongly correlated honest sources, so it is selected (line 4)
and subtracted from S (line 5). The remaining set of sources S is returned as set
containing the suspect sources (line 6).

Example 5.1 (Partitioning). Figure 5.3 illustrates for a very small example set of sources,
how the algorithm should partition the sources into honest and suspect ones; the set of sources
is represented in form of a complete graph where thick edges represent high correlations, and
thin edges represent low correlations. As can be seen from the graph, the strongly correlated
honest sources s3, s4, s5 and s6 should form a separate cluster, leaving s1 and s2 as suspects.

5.4. Theoretical Analysis

Algorithm 1 interprets the correlation between two sources as their similarity. In this
section, we analyze whether the correlation is actually a good similarity measure;
this is the case if it measures two colluders to be similar, two honest sources to be
similar, and a colluder and a honest source to be dissimilar. We first show how we
can theoretically compute correlation for these three types of pairs, and then analyze
its properties concerning the similarity.

5.4.1. Computing Correlation

To compute the correlation, we do not use the common correlation coefficient [107,
p. 103], because it measures the linear relationship between quantitative variables,
and we are dealing with qualitative variables (to be or not to be together in the same
group). Instead, we use enumerative combinatorics to compute pc. For the sake
of simplicity, we assume a large set of sources S , and thus can use sampling with
replacement. The error introduced, in comparison with sampling without replace-
ment, is negligible for our purposes.

In the following, we demonstrate how pc can be computed for a pair of two honest
sources (we write “honest&honest” or simply “h&h”). We only address the case

107

5.4. Theoretical Analysis

Table 5.1.: Parameters for computing correlation pc.

k redundancy level

fa fraction of colluders in S
pcam probability that camouflage colluders actually collude

ρ probability that a honest source returns incorrect information

ph probability of picking a correct honest source, i.e., ph = (1− fa)(1− ρ)

pw probability of picking an incorrect honest source, i.e., pw = (1− fa)ρ

of unconditional camouflage collusion (UCm) here. The derivations of all other
formulas, i.e., those for the pairings honest&colluder (h&c) and colluder&colluder
(c&c), as well as for CCm can be found in Appendix E.1.

The computation of pc depends on certain parameters, which are listed in Ta-
ble 5.1. To compute pc in the case considered, we add up the probabilities of all
mutually-exclusive cases in which the two honest sources are together in the same
group. Because we account for the fact that honest sources can also return incorrect
information, a number of cases have to be considered.

Given that they are in the same vote, two honest sources A and B are also together
in the same group (plurality/minority), iff any of the following is the case:

• they both return the correct information: P1 = (1− ρ)2 .

• they both return incorrect information: P2 = ρ2 .

• exactly one of them returns the correct information: P3 = 2 · ρ · (1− ρ), and the
correct source is not in the plurality, which means that either:

– apart from them there are only incorrect honest sources: P4 = pw
k−2, or,

– there are at least as many colluders as there are appearances of the cor-
rect information in the vote, and the colluders actually decide to collude.
Apart from the two honest sources A and B, there are k − 2 remaining
sources in the vote. For this part of the vote, let index i count the number
of colluders, and let j count the correct honest sources. Then, the remain-
ing k− 2− i− j sources are incorrect honest sources. Now, only cases have
to be considered in which the number of colluders is at least as high as
the number of correct honest sources, i.e., where i ≥ j + 1. This is the case
if j ≤ i − 1; but since there are only k − 2− i sources left in the vote, it

108

5.4. Theoretical Analysis

h1

h2 c2

c1

h&
h h&c c&
c

Figure 5.4.: Dividing line between honest sources (h1, h2) and colluders (c1, c2).

must hold j ≤ min(i− 1, k− 2− i). This gives:

P5 = pcam ·
k−2

∑
i=1

(
k− 2

i

)
fa

i

︸ ︷︷ ︸
prob. of picking

i colluders

·

min(i−1,
k−2−i)

∑
j=0

(
k− 2− i

j

)
ph

j pw
k−2−i−j

︸ ︷︷ ︸
prob. of picking j ≤ i− 1

correct honest sources

. (5.4)

These cases are mutually exclusive, and so, we can compute correlation pc by adding
the corresponding probabilities:

pUCm
c (h&h) = P1 + P2 + P3 · (P4 + P5) . (5.5)

5.4.2. Correlation as Similarity

To assign the sources to clusters that contain only colluders or honest sources, these
two groups of sources have to be separated. This is illustrated in Figure 5.4. In this
section, we want to analyze whether correlation is a good measure for this purpose.
This is the case, if the correlation is low for h&c pairs, which would for instance
be all (hi, cj) in the figure; and high for h&h and c&c pairs, i.e., the pairs (h1, h2)
and (c1, c2) in the figure. To this end, we computed the correlations as described
in the previous section. Figure 5.5 shows these correlations for h&h, h&c and c&c
pairs in the basic case of redundancy k = 3 and an error rate ρ = 0.00221. For h&c
pairs, the camouflage probability has been varied; for h&h and c&c pairs this has
not been done because the differences are negligible in this case. Further cases are
addressed in Appendix E.1.3. The figure reveals that in fact the correlation of h&c
pairs is generally lower than the correlation of h&h and c&c pairs. This is the case
both for CCm and UCm colluders. Furthermore, it holds for both types of colluders
that if they collude more often, the correlation for h&c pairs is lower, and thus the
distance to the correlation of other pairs becomes greater. Generally, one can say that
the greater this difference, the easier it is to detect the dividing line between honest
sources and colluders. Therefore, in the CCm case one can expect that the smaller

109

5.5. Evaluation

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p c

fa

c&c
h&h

h&c (pcam=0.2)
h&c (pcam=0.6)

h&c (pcam=1)

(a) UCm

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p c

fa

c&c
h&h

h&c (pcam=0.2)
h&c (pcam=0.6)

h&c (pcam=1)

(b) CCm

Figure 5.5.: Correlations between different types of sources (k = 3, ρ = 0.00221).

fractions of colluders fa, the less accurate will be the clustering. To increase the
difference in the correlations between h&h and h&c pairs in the CC-case, it can help
to exponentiate the correlation matrix. We call this “amplification”, and discuss its
effects in Appendix E.2. To summarize, correlation is a suitable similarity measure
with the desirable property that the more harm the colluders attempt, the easier they
can be detected.

5.4.3. Undetectable Attack

There is a collusion strategy, which cannot be detected by our algorithm. This strat-
egy is to collude only if all sources in a vote are colluders. As with the CCm strategy,
this strategy requires the attackers to know the redundancy level. This means that
the attack can be countered by varying the redundancy level. Another measure
against this attack is to increase the redundancy level. The success probability of
the attack is fa

k. For example, for a fraction of colluders of fa = 0.5 and a redun-
dancy level of k = 5, this is only 1

25 = 0.031 and for k = 7 only 0.008. The success
probability decreases even further for decreasing fa.

5.5. Evaluation

We evaluated the algorithm for two different clustering algorithms, both from the
field of graph clustering: the Markov Cluster Algorithm (MCL) [159] and Minimum Cut
Tree Clustering [47], which we call “MinCTC”. In [20], MCL has been shown to be
more accurate than several other algorithms. The authors did not test MinCTC and
so we compare it to MCL in this work.

110

5.5. Evaluation

5.5.1. Accuracy

5.5.1.1. Choice of Clustering Parameters

In the following, we describe how the clustering parameters of MCL and MinCTC
were chosen for the experiments.

MCL MCL is based on the simulation of stochastic flows in graphs. The only param-
eter for MCL is the inflation parameter I ∈ [2, 30]. This parameter determines the
level of granularity of the clusterings obtained. The experimental results show
that the accuracy of the algorithm does not depend greatly on the exact choice
of this parameter. As discussed in Appendix E.2, we amplify the correlation
values p̂c with an additional parameter θ. Since MCL uses a probabilistic inter-
pretation of the edge weights, the relative differences between the correlation
values are generally amplified.

MinCTC MinCTC is based on the construction of minimum-cut trees in graphs, as
defined in [66]. The nodes in such a mincut tree correspond to the nodes
in the original graph. Weights are attached to the edges in a mincut tree in
such a way that the minimum edge weight on the path between each pair of
nodes in the tree corresponds to the minimum cut for these two nodes in the
graph. In [62], the authors experimentally compared different approaches for
constructing mincut trees. In our work, we use the GHs implementation (a
variant of the Gomory-Hu algorithm [66] using the source selection heuristic)
because it turns out to be more robust than the alternatives [62].

MinCTC clusters an input graph in the following way. In th first step, the graph
is extended by an auxiliary vertex, which is connected to all other vertices by
new edges. For these edges, a specific edge weight is used, this being the
only parameter of the algorithm. For the resulting graph, the mincut tree is
constructed. Then the auxiliary node and all edges connected to it are deleted
from the tree. Finally, each tree in the resulting forest is returned as a distinct
cluster.

Through experimentation we found that, depending on the setting, there is
a particular range of suitable parameters. Below this range, the algorithm
returns only a single cluster containing all sources (underfitting); in these cases,
the auxiliary node in the mincut tree is a leaf and so no mincut crosses the
auxiliary node. Above this range, it returns as many clusters as sources, i.e.,
each source makes up its own cluster (overfitting); this is because the auxiliary
node connects to every node in the mincut tree and so the mincut of every
pair of nodes crosses the auxiliary node. Thus, the algorithm may find suitable
clusterings only for parameters within the range – if it is assumed that there
are colluders among the sources. Therefore, we implemented a binary search
to find a parameter that lies in this range and produces a specified number
of clusters k (we used k = 2). The search is terminated and the output of the

111

5.5. Evaluation

algorithm is accepted if it returns more than one cluster and fewer clusters
than there are sources. Sometimes the range is empty, because either there
are not enough observations, or the rate of collusion is too low. If the search
is not successful, all sources are classified as honest in order to avoid false
positives. As with MCL, we amplify the correlation values in the experiments
with different exponents θ (again see App. E.2).

5.5.1.2. Accuracy Measure

To measure the accuracy of the algorithm, we first label the output of the algorithm
according to the confusion matrix described in Section 2.5.2; this results in a number
of true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).
The positives are identified suspects, and negatives are identified honest sources.
As accuracy measure, we use the F1-Measure [126], which is the harmonic mean of
precision (P) and recall (R); these are defined as follows:

P =
TP

TP + FP
, (5.6)

R =
TP

TP + FN
. (5.7)

Thus, the precision represents the fraction of correctly identified colluders among all
sources marked as suspect, and recall represents the fraction of correctly identified
colluders among all sources that are in fact colluders. In other words, precision is the
probability that a suspect is in fact a colluder, and recall measures the completeness,
i.e., how many of the colluders have been detected. In the best possible case, both
are 1, that is FP = FN = 0. We check the accuracy using the F1 measure, which is
defined as follows:

F1 =
2 · P · R
P + R

=
2 · TP

2 · TP + FP + FN
. (5.8)

F1 takes a value of 1 iff our algorithm returns a set of suspects that contains all
colluders but no honest sources. If F1 takes a small value then FP and/or FN are
high and TP and/or TN are small. We will later also use the “false positive rate”
(FPR) to examine false positives separately. This rate describes the fraction of honest
sources that are falsely marked as suspects among all honest sources; it is thus
computed as follows:

FPR =
FP

FP + TP
. (5.9)

5.5.1.3. Results

The algorithm is evaluated for the setting described in Section 5.2 for |S| = 100 and
fa = 0.1. Whether the algorithm will perform better or worse in other scenarios

112

5.5. Evaluation

0
2
4
6
8
10
12
14

051015202530
0

0.2

0.4

0.6

0.8

1

F1

#votes/pair

I

F1

(a) UC

0
10
20
30
40
50
60

051015202530
0

0.2

0.4

0.6

0.8

1

F1

#votes/pair

I

F1

(b) CC, θ = 20

Figure 5.6.: Accuracy of collusion detection algorithm (MCL, fa = 0.1).

follows from the theoretical analysis. We set the redundancy level k to a common
value of 3 [11]. Each run is averaged over 103 randomly-generated sets of voting
histories HS . Each history HS is based on a certain number of observed votes. This
number is indicated for the simulation results as an average number of observed
votes per pair of sources, denoted by “#votes/pair”. The overall number of observed
votes can then be computed as follows. For x votes/pair and sources S , we have to
multiply x with the number of edges in a complete graph that has the nodes in S as
edges; so the overall number of observed votes is: x · |S|·(|S|−1)

2 .
Figure 5.6(a) shows the accuracy of the algorithm using MCL for the UC case.

No amplification θ has been applied. An average of F1 = 1 first occurs for an av-
erage number of 4 votes/pair and inflation parameter I between approximately 13
and 22.8. For more than 10 votes/pair, the algorithm provides perfect accuracy for
all possible parameters. MCL showed problems for a small range of parameters
22.8 < I < 23.3. For this set of parameters, MCL did not always converge within
5 seconds, and if it converged returned a particularly high ratio of false positives,
which points to overfitting by MCL. Figure 5.6(b) shows the accuracy of the algo-
rithm using MCL for the CC scenario. An almost perfect precision of F1 = 1 on av-
erage was not achieved until around 60 votes/pair, a very high value. MCL showed
similar problems to the UC case for 22.5 < I < 23.3. For smaller amplification, the
accuracy became worse, and for θ = 1 the algorithm was not able to detect colluders.
This confirms the findings of Appendix E.2 that amplification helps in the UCcase.

Figure 5.7(a) shows the accuracy of the MinCTC variant of Alg. 1 for varying
amplifications θ. Generally speaking, the algorithm needs around 4 votes/pair to
reach perfect accuracy for a specific θ. Starting from θ = 5, several “valleys” can
be observed, in which the accuracy drops dramatically. This is possibly caused by
the procedure that we used to find an optimal clustering parameter; consequently,
other procedures might help to prevent these valleys. With few votes/pair, the
algorithm struggles, especially for higher amplifications. Figure 5.7(b) plots the false
positive rate against the amplification for all experiments. This shows that a high

113

5.5. Evaluation

0
2
4
6
8
10
12
14

#votes/pair

051015202530

θ

0

0.2

0.4

0.6

0.8

1

F1

(a) F1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

fa
ls

e
po

si
tiv

e
ra

te

θ

(b) False positive rate

Figure 5.7.: Accuracy of collusion detection algorithm (MinCTC, UC, fa = 0.1).

amplification makes the rate worse in the UC-case; this corresponds to our findings
in Appendix E.2. But also, the figure reveals that for an amplification of θ < 5, the
algorithm never returned false positives, which is a nice property. The accuracy of
the algorithm using MinCTC for the CC scenario is not shown, because for up to 200
votes/pair and varying θ it throughout performed with an average of F1 = 0; that
means that it never identified any colluder as suspect. Apparently, MinCTC cannot
cope with cases where h&c pairs differ only slightly from other types of pairs. This
may also be due to the problem of finding a suitable parameter for MinCTC.

5.5.2. Computational Complexity and Running Time

Theorem 5.1. The complexity of Algorithm 1 is in O(|S|2) iff the complexity of the clus-
tering algorithm used is also in this complexity class; otherwise it is in the same complexity
class as the clustering algorithm.

Proof. Line 2 of Algorithm 1 computes the correlation for each pair of sources, and
thus is in O(|S|2). The complexity of line 3 is determined by the complexity of the
graph clustering algorithm used. Lines 4 to 6 of the algorithm are in O(|S|).

MCL’s complexity is essentially dominated by matrix multiplication [20] and is in
O(|S|3), but can be reduced by implementation to worst caseO(|S|c2) [159], where c
is a pruning constant smaller than |S|. MinCTC relies on maximum flow algorithms
which are also polynomial in complexity [47]. Thus, the overall complexity is at
least in O(|S|2), but depending on the clustering algorithm it can be higher; if for
example MCL is used it is in O(|S|c2).

We experimentally compared the running times of MCL and MinCTC for different
sizes of S . In the tests, both algorithms take their inputs from a file but do not write
any output. The input mainly consists of the sample correlation for each pair of
sources, and so the file size grows nearly quadratically with the number of vertices
in a graph. However, the two algorithms worked on files with the same size and

114

5.6. Dealing with Suspects

0

10

20

30

40

50

60

70

80

90

200 400 600 800 1000

se
co
nd
s

number of sources

MinCTC
MCL

Figure 5.8.: Running times of MCL and MinCTC (UC, 10 votes/pair, θ = 4).

so differences in their runtime are attributable entirely to the processing performed.
Figure 5.8 shows the running times of MCL and MinCTC in seconds for the same
setting (UC, 10 obs./edge); experiments were run on a 2.33 GHz Linux machine
with an Intel Xeon CPU and 3GB RAM. Although MCL was shown in [20] to be
relatively slow, it still clearly outperforms MinCTC and its complexity seems to grow
considerably more slowly.

5.6. Dealing with Suspects

In this chapter, we proposed an algorithm that detects colluding behavior when
using redundant requesting. The detection of colluders is only a first step. As soon
as suspected sources have been detected, measures have to be taken to:

• recheck the results that the suspected sources have returned in the past, and

• prevent the suspected sources from submitting further incorrect results.

As proposed by Silaghi et al. [138], the rechecking can be done by additional re-
dundant requests to unsuspected sources. However, this again makes the scheme
sensitive to collusion, because it carries the risk of consulting malicious sources that
have been honest previously. Therefore, an explicit verification of the results on
trusted machines is more advisable. To prevent the suspects from cheating in the fu-
ture, they can be blacklisted. A drawback of this approach is that, if the classification
was incorrect, honest sources are removed from the pool of potential sources, and
so their capacity is lost. Alternatively, in addition to redundant requesting, one can
spot-check these sources frequently. A third approach is to include them in votes
with sources that belong to the strong cluster of honest sources. Again, this carries
the risk that some of the sources in the strong cluster are malicious sources that have
pretended to be honest. Finally, one could treat suspects more carefully by attaching
a weight to their vote, and setting this weight considerably lower than that of honest
sources. It is outside the scope of this thesis and subject to further studies which of
these approaches is in practice the most suitable.

115

6. Related Work and Comparisons

In this chapter, we first point to research that is closely related to our work. We then compare
the approaches that we have proposed in this thesis with each other, and discuss common
issues.

Organization In Section 6.1, we discuss related work. We provide a comparative
study of our mechanisms in Section 6.2, and discuss common issues in Section 6.3.
Finally, we describe in Section 6.4 a concrete example from the literature that illus-
trates how spot-checking and redundant requesting can be combined.

6.1. Related Work

Even though we have taken an abstract perspective in this thesis, our work is closely
related to work that has been done on sabotage tolerance in volunteer computing
and other forms of distributed computing such as grid computing [48]. Therefore,
we first review significant related literature from these fields of research. We then
compare a mechanism for collusion detection from the literature with our algorithm.
Finally, we take a look at work that has been done in the field of trust.

6.1.1. Spot-Checking

Sarmenta [133] proposes combining redundancy with conventional spot-checking. In
this approach to spot-checking, workers are regularly assigned work units for which
the correct result is already known. Workers that get caught returning incorrect re-
sults are blacklisted and their past results are discarded (if identities can be checked).
In their model, attackers are described by a Bernoulli process and return correct and
incorrect results with a specific probability. Assuming this attacker model, the au-
thor attains probabilistically guaranteed levels of correctness. However, Sarmenta’s
model does not consider attackers that follow more sophisticated strategies such as
those that we have considered in our work, e.g., collusion or repetitive cheating.
More precisely, the model assumes the workers’ error rates to be constant over time,
which is not the case for instance in volunteer computing systems [88].

Zhao et al. [185] propose the “Quiz” scheme for result verification in peer-to-peer
grids. In this scheme, a worker delegates a whole package of work units to a single
worker. In such a package, quizzes for which the correct result is known are inter-
spersed. This is similar to our spot-checking approach with challenges. However,

116

6.1. Related Work

Quiz discards a whole package if only one of the quizzes is answered incorrectly,
reduces the trustworthiness of the respective worker and possibly blacklists it. This
makes it unsuitable for scenarios where also honest workers exhibit small error-
rates greater than zero. In our work, we have shown that our trust model reacts
at least as reasonably and sometimes better to different types of sources than their
trust models. Additionally, Zhao et al. find that under collusion, Quiz outperforms
redundancy; in the absence of collusion however, Quiz performs worse. This ar-
gues for the usefulness of our trust model, or – in cases where collusion cannot be
precluded – redundancy with collusion detection.

Germain-Renaud and Monnier-Ragaigne [60] propose a result-checking algorithm
for volunteer computing systems. They use Wald’s sequential test to incrementally
check results from a large batch of jobs until either the batch can be accepted or has
to be rejected. As with our method, this technique is applicable in cases where a
certain error rate in the acquired information is acceptable; the authors apply their
technique for instance to check a large-scale Monte-Carlo simulation. However, the
technique requires what they call an “oracle”, which recomputes the results at run-
time. On the one hand, this keeps the number of checks small, because the accep-
tance decision can be made early. On the other, in scenarios apart from volunteer
computing, such as file-sharing networks, an oracle that verifies a piece of informa-
tion at runtime is not generally available. Therefore, we have proposed a mecha-
nism that uses prepared challenges, which can for instance be known facts, to check
newly-acquired information. As a consequence, and in contrast to the oracle-based
mechanism, our mechanism requires that the number of challenges is determined
in advance, and that challenges are indistinguishable from real requests. Roch and
Varrette [127] propose a spot-checking mechanism for dependent tasks in the scenario
of divide-and-conquer computations. Independently of the attacker model, they
reach a user-defined error probability bound for detecting massive attacks, where
the bound depends on the minimum ratio of malicious workers in the population.
Again, correct results for the spot checks are assumed to be recomputed reliably.

Du et al. [41] propose an effective spot-checking mechanism for scenarios where
many computations have to be performed but only few of the results have to be
returned. This is for instance the case when using distributed computing to break a
password in a brute-force fashion. In their approach, a worker constructs a “Merkle-
tree” that combines the hashes of all results belonging to a specific task in a tree-like
manner. The worker commits the root of the tree to the master. The master can now
spot-check the worker and reconstruct the root of the tree with the hashes, together
with their siblings that also have to be transferred. This approach can be used to
make sure that a worker computes all intermediate steps in a chain of dependent
computations, where only the final result has to be submitted. However, it cannot be
used to ensure the correctness of a set of independent pieces of information, which
is the actual research question of this thesis.

117

6.1. Related Work

6.1.2. Collusion Detection

Silaghi et al. [138] propose an algorithm for detecting collusion. They consider three
different types of malicious workers: first, naive workers that randomly return incor-
rect results with a certain probability; secondly, workers that only return incorrect
results if they know that they hold the majority in a vote; and third, a mixture of the
first two types. For each worker, their core mechanism counts the number of votes
that were cast against it in past votes. Then, since naive workers have a different
probability of votes being cast against them, this type and some part of the third
type can be identified and removed from the votes. In order to spot the second type
of colluding worker, they again apply the redundancy principle to test workers in
the remaining “conflicting” votes. At this point, we face again the problem of col-
lusion. This is especially relevant in the case of high fractions of colluders, where
the probability of getting false negatives is high. In contrast, our collusion detection
mechanism does entirely without making use of redundancy checks. Also, as we
have shown, correlation can directly identify conditional collusion, something not
accomplished by the measure of Silaghi et al. However this comes at a cost. In an
optimal case, our algorithm needs around 4 votes/pair to reach an acceptable clas-
sification error (see Sect. 5.5.1.3); this means overall 4 · 100·99

2 = 19, 800 votes. In a
comparable scenario, the algorithm of Silaghi et al. works already with only around
3, 000 votes. The reason for this is that they look at the behavior of single sources
(and there are |S| sources), while we look at the correlation between sources, that
is at pairs of sources (and there are |S|·(|S|−1)

2 pairs). To summarize, our algorithm
addresses more attack strategies than the algorithm of Silaghi et al., but it needs also
a much higher number of observed votes. The improvement of this required number
of observed votes is a topic for further work.

Another, very severe, drawback of Silaghi et al.’s approach is that they assume
that the colluders are not aware of being observed by their mechanism. Otherwise,
malicious sources could use strategies that make them look like honest sources. Our
collusion-detection algorithm works without this assumption: A colluder cannot
impact the correlation between two honest sources, and so cannot dissolve the strong
cluster of honest sources; the only strategy that brings a colluder closer to this cluster
of honest sources is to withdraw from collusion.

6.1.3. Trust Modeling

Two main directions in computational trust modeling have been pursued in the lit-
erature. On the one hand, there is the cognitive approach, promoted mainly by
Castelfranchi and Falcone [29, 30, 46]. In their approach the trustor tries to develop
a “theory of the mind” of the trustee in order to reason about how trustworthily he
will behave in future interactions. On the other hand, there are the computational
models. Here, the trustor uses evidence in the form of experiences to derive numer-
ical values that should reflect the trustworthiness of the trustee. In the majority of
cases, this process involves probabilistic mechanisms [167, 26, 28, 45, 157] or formu-

118

6.1. Related Work

las that are based mainly on intuition [110, 174, 182, 130, 74]. Literature surveys on
further trust models can be found in [12, 117, 131, 85].

Our trust model, which belongs to the second category, computes the trust and
uncertainty values based on the mean and the variance of the Beta distribution.
Many other evidence-based trust models also use the beta distribution to this end
[109, 167, 157, 87, 172, 23, 79, 111]. However, the way in which the experiences
are processed, and how trust and uncertainty values are used for decision-making,
differs from model to model.

6.1.3.1. Trust in Information Sources

Fullam et al. [55] propose a method for information acquisition from possibly ma-
licious or incompetent sources. They show how to manage the trade-off between
costs for information acquisition, quality of the acquired information and the cover-
age of an agent’s goals. In their model, the reliability of an information provider is
assessed by checking whether some acquired information fits the agent’s beliefs. In
contrast to our mechanisms, their approach is not able to handle acquired informa-
tion that is not related to an agent’s beliefs, as is the case for results of mathematical
calculations, music or video files, etc. Further papers deal with the assessment of the
trustworthiness of sources based on input from human users [61, 70]. One require-
ment for our mechanisms was however that they work without the need of human
intervention.

Liau [97] formalizes the relationships between belief, trust and information acquisi-
tion by defining an extended modal logic. Trust itself is modeled by a modal operator
Tij ϕ, which means that agent i believes in agent j’s judgment on proposition ϕ. A
proposed axiomatic system makes it possible to derive complex properties of trust
in the context of information acquisition. In [34], Liau’s logic is extended to capture
the concepts of topics and questions. The extension with topics allows the context-
sensitivity of trust to be taken into account; the extension with questions makes it
possible to formalize queries in the form (Q,R), as introduced in the introduction.

Demolombe [36] formalizes different definitions of trust by means of modal logics.
To this end, the author differentiates essentially four properties of an information
source – a source is called:

• “sincere” towards some agent A, iff it believes everything that it tells A to be
true.

• “credible”, if everything it believes is a fact.

• “cooperative” towards some agent A, iff it tells A all its beliefs.

• “vigilant”, if it knows all existing facts.

With reference to Section 4.1.3, our definition of trust accounts explicitly for sincerity
and credibility; it implicitly addresses the notions of cooperativeness and vigilance,
because we require that the provided information R makes (Q,R) a fact, i.e., R

119

6.1. Related Work

contains all correct answers to Q (see Sect. 1.1). Besides this, since we are dealing
with probability theory, our definition accounts not only for complete trust or dis-
trust, but also for estimates in between. In a paper which proposes an algorithm that
performs belief revision while taking into account the trustworthiness of the sources,
Barber and Kim [16] give another definition for trust in information sources. They
define trust as “the confidence in the ability and intention of an information source
to deliver correct information”. This also corresponds to our definition. However,
it ignores the subjective nature of trust. Also, it does not include the property of
cooperativeness as defined by Demolombe.

6.1.3.2. Combining Evidence

For cases where the most recent evidence is not compatible with older evidence,
Xiong and Liu [177] propose considering only the latest evidence, and dropping
the old evidence. In their approach, a trust value t′ is computed on a subset of all
available evidence that contains only the most recent evidence; if t′ is considerably
smaller than the trust value that is based on all the evidence, t′ is used as a final
trust value. This means that a trustee can easily lose its trustworthiness through
a few bad actions, but rebuilding the trust is hard. Like ours, their idea aims to
counter the strategic behavior of a malicious trustee. However, in our case, we are
dealing with a separate set of challenges N and real requests M, and thus, it can
happen that by chance all incorrect replies fall on N, exceeding the area defined
by threshold ε, making the most recent error rate estimate fall too low. So, if x is
low, ρ̂ can become high, even for honest sources. For this reason, we take also into
account older error rate estimates that are based on conflicting evidence, since they
might actually have been more accurate. For the same reason, we also start a new set
of evidence if the new error estimate is smaller than before. This makes it possible
for an information source to increase its trust value very fast with a single set of
correct replies – something Xiong and Liu wished to prevent. However, in our case,
the uncertainty will increase as well, and thus the source does not actually benefit
from such a behavior. The following example illustrates the difference between their
approach and ours.

Example 6.1. Assume threshold ε = 1
12 for combining evidence, and weights (wi)i =

(1, 3, 6). An honest information provider has error rate ρ = 1
10 . Five requests with m, n = 10

are made to this provider. Assume the incorrect replies yi to the challenges are in chronological
order (1, 2, 0, 1, 5). In our model, for the first four replies, the evidence would be aggregated,
because the corresponding error rate estimates 2

12 , 3
12 , 1

12 and 2
12 are within [2

12 − ε, 2
12 + ε] =

[1
12 , 3

12]. However, the last one would fall outside the range (5+1
10+2 = 1

2 > 3
12) and so the

overall trust value would be computed as follows (note that w1 is not used since there are
only two error rate estimates available):

ṫ =
w2 · ρ̂[1, 4] + w3 · ρ̂[5, 5]

w2 + w3
=

(
3 · 5

42
+ 6 · 6

12

)/
9 =

47
126

. (6.1)

120

6.1. Related Work

In Xiong and Liu’s approach, the trust value for the whole evidence is first computed:(
1 · 1

12
+ 3 · 2

12
+ 6 · 6

12

)/
10 =

43
120

. (6.2)

The trust value based on the last reply only is 1
2 , and because it is greater than 43

120 + ε = 53
120 ,

only this value, which we designate t′, is used. For reasons of comparison, let us reduce it
to the same denominator as the trust value from our model, which gives t′ = 1

2 = 63
126 . The

estimate of our model is more accurate in this case:

|ṫ− ρ| = | 47
126
− 1

10
| < | 63

126
− 1

10
| = |t′ − ρ| . (6.3)

Again, one could argue that our trust value would be less accurate if the source was actually
malicious. This is true for the trust value in isolation; however, our trust value comes along
with an uncertainty value, and this uncertainty value reflects the sudden change: It increases
from 0.157 after the fourth reply, to 0.253 after the fifth reply.

6.1.3.3. Trust Model Tuning and Evaluation

Many evidence-based trust models from the literature can be parameterized. We
will now describe the parameters used by a number of models. Buchegger and
Le Boudec [23] use several aging factors, which correspond to the weights used in
our model, and give a rule of thumb for how to choose them. Similarly, Wang and
Vassileva use “learning rates” [166]. Capra and Musolesi [28] use aging factor-like
parameters that have to be defined subjectively. In the FIRE model [74], a “recency
scaling factor” (an aging factor) and the “temperature” (the Boltzmann parameter in
our model) are used. Other models [172, 85, 87, 176] also use tunable aging factors,
and [75] uses an aging function. In [186], a modifiable threshold determines when
an individual can be considered as trustworthy. Parameters for balancing trust and
reputation values are used in [161, 160, 13]. The issue of how to systematically tune
all these parameters has, to our knowledge, not yet been addressed.

The ART testbed [54] was developed to enable a comparison of the various trust-
and reputation models proposed in the literature. In this testbed, several agents,
each of which employs a certain trust model, compete in a turn-based game. The
performance of an agent is measured both from an agent- and a system perspec-
tive according to certain objective criteria. Thus, the model allows measurement
of the performance of different trust models competing with each other. An im-
portant limitation of this approach is that it is hard to generalize the performance
measurements: Would the trust model perform similarly if it competed with an-
other selection of trust models? The performance of a trust model has always to be
seen in the context of the other trust models involved. Therefore, the testbed is not
suitable as a general benchmark. In contrast to this, our tuning procedure aims for
expected utilities for different scenarios of cheaters. This makes it suitable as the
basis for a benchmark, in which the expected utilities of different trust models can
be compared.

121

6.2. Comparative Study

6.2. Comparative Study

In this section, we compare trust-enhanced spot-checking with redundant requesting
plus collusion detection in terms of applicability, accuracy, robustness and overhead.

6.2.1. Applicability

As discussed in Section 3.1.4, spot-checking relies on the creation of challenges.
Clearly, if this is not possible, (trust-enhanced) spot-checking cannot be applied.
Furthermore, our spot-checking mechanism requires that a source can in general
deal with m + n requests at once. In contrast, redundant requesting requires only
one single request to be processed by one source. However, redundancy requires that
a set of k sources can handle the same request, which is not a requirement of spot-
checking. Also, the application of the collusion detection algorithm requires that a
high number of requests is made to a preferably small number of sources. Although
such a situation is also favorable to the trust model because the characteristics of the
few sources can be learned very well, it is not a strict requirement.

6.2.2. Accuracy

Our collusion detection algorithm is not equipped with functionality to deal with
suspects (see also Sect. 5.6). For this reason, we cannot compare its accuracy with
that of the trust-enhanced spot-checking mechanism. However, two findings from
the literature point to the fact that redundant requesting is only more effective than
spot-checking if collusion can be prevented. Yurkewych et al. found that, if collusion
cannot be prevented, redundancy is much more costly than non-redundant request-
ing [181]. Confirming this, Zhao et al. [185] found that their spot-checking mecha-
nism outperforms redundant requesting under collusion; in the absence of collusion
however, their mechanism performs worse. This argues for further research in both
fields, that is, trust-enhanced spot-checking and collusion detection.

6.2.3. Robustness

The robustness of the two approaches depends strongly on the fraction of malicious
sources in S . The highest tolerable fraction for the collusion detection mechanism
is fa < 0.5. In principle, the trust model can tolerate higher fractions; however,
exploration has to be emphasized in such cases.

The two approaches are quite different, and so are the attack strategies. The trust
model has been shown to deal with all attack strategies considered in this thesis.
However, for unknown attack strategies, the model has to be evaluated anew. The
most effective attack against redundant requesting is collusion. To defend against
this attack, we have proposed the collusion detection algorithm. Although not every
kind of colluding behavior can be detected by this algorithm with few observations,
the more the attackers collude, the better the algorithm detects them.

122

6.2. Comparative Study

If challenges can be produced reliably, the trust model can handle incorrect infor-
mation also in cases where incorrect information is correlated across honest sources.
Also, the collusion detection algorithm is able in this situation to distinguish honest
sources from colluders. However, as discussed in Section 2.3.2, redundant requesting
would struggle here. More precisely, it would accept correlated incorrect informa-
tion that is provided by a majority of honest sources. Therefore, in scenarios where
errors are commonly correlated over honest sources, the trust model is preferable to
redundant requesting; alternatively, additional mechanisms that detect the correla-
tion of errors have to be put in place.

Finally, there is an attack that could be performed by saboteurs (see Sect. 4.1.3.1).
When such an attacker controls a large fraction of sources, he can implement a “de-
nial of service” (DOS) attack, both against the trust model and redundant request-
ing. To this end, malicious sources return random results all the time. For the the
trust model, this would extend the time that it takes to find the trustworthy sources.
For redundant requesting, there would be many more conflicting votes. However,
in both cases, the error rate of accepted results would not suffer. This is because
replies with an unacceptable estimated error rate in the case of the trust model, and
conflicting votes in the case of redundant requesting, are ignored.

6.2.4. Overhead and Complexity

Spot-checking has an overhead of at most m+n
m (see Sect. 3.3.2.2). For the trust model

this cannot be easily measured, because it depends on the competence and intention
of available sources, but also on how “trustful” the model is set to be (eq. (4.17)).
In any case, it is bound by m+n′

m , where n′ is the maximal number of challenges.
The overhead of redundancy is k. That means that the trust model can start with
n′ = m · (k − 1) challenges to have at most the overhead of redundancy; to give
an example, if redundancy is set to a common value of k = 3, the trust model can
start with 20 challenges for 10 real requests. Considering the subsequent decrease
in challenges needed for trustworthy sources, even more challenges can be used
initially.

Let us now analyze a hybrid approach that combines replication with spot-checking.
Here, replication can be used to fill a pool of challenges. As soon as this pool con-
tains n challenges, the spot-checking mechanism is used. In other words, replication
is used to generate the challenges. In this manner, we can make a definite gain
compared to the use of replication alone as we will now show; although note that
the information providers have to be selected carefully to avoid the possibility of
intersection attacks (see Sect. 3.3.1.2). The use of redundancy gives n results for k · n
requests. These results can be used as challenges to get m more results through
spot-checking. We thus get overall m + n results for k · n requests, which gives an
overhead of:

Overhead(hybrid) =
k · n

n + m
. (6.4)

123

6.3. Common Issues

For example, for n/m = 1 and k = 3, we halve the overhead from 3 for pure
redundancy to 3·n

m+n = 3
2 .

Concerning complexity, all three mechanisms, i.e., the spot-checking mechanism,
the trust model and the redundant requesting, are linear in the number of requests.
However, the collusion detection mechanism is at least quadratic, and its current
implementation cubic, in the number of sources. Depending on when and how
often the collusion detection mechanism is executed, the complexity of replication
with collusion detection can be considered to be much higher.

6.3. Common Issues

In this section we discuss two issues that are related both to trust-enhanced spot-
checking and redundant requesting.

6.3.1. High Churn Rates

In our trust model tuning procedure, we used a fixed population of sources. The
rate with which new sources enter the population and old sources leave it, known
as the “churn rate”, can impact the effectiveness of the Boltzmann exploration. If the
churn rate is high, a more intense exploration is advisable for two reasons: More new
sources have to be encountered, and the already-known sources are likely to leave
the system. Therefore, to tune a trust model for a concrete P2P network, knowledge
about churn rates in the network should be integrated in the tuning procedure. This
can be done by using churn models [154] to simulate typical churn, and tuning the
model under these circumstances.

Similarly, the churn rate would have an impact on the performance of our col-
lusion detection mechanism. If sources leave the system very often and reenter
each time with a new identity, our algorithm becomes unsuitable because it re-
quires a high number of observations on sources with constant identity. Under
the assumption that sources are interested in keeping the requester as a “customer”,
they do however have an incentive to keep their identity, so that only malicious
sources would be interested in changing their identity (whitewashing attack, see
also Sect. 4.1.2.4). As a consequence, these would move even further apart from the
strong cluster of honest sources. Unfortunately, newcomers that are actually hon-
est also would be initially far away from the large cluster of honest sources, and
would need some time before eventually becoming members of the cluster of honest
sources.

6.3.2. Dealing with Inhomogeneous Sources

Throughout this thesis we have made the assumption that information is either cor-
rect or incorrect. However, in practice there are sometimes slight variations in what

124

6.4. Combination

is correct. In the scenario of volunteer computing, Taufer et al. [156] have for exam-
ple been facing the problem that the CPUs of different workers produced slightly
different results. To counter this problem they have proposed outsourcing compu-
tational tasks only to “compatible” CPUs. The mechanisms proposed in this thesis
assume that all considered information sources are compatible in that sense. For
example, we assumed for redundant requesting that, when picking k workers, these
are selected from homogeneous subsets of workers. As a consequence of this consid-
eration, the collusion detection mechanism has to be applied for each subset of ho-
mogeneous sources separately. Alternatively, and this is applicable to spot-checking
as well, an acceptance range can be defined within which a piece of information is
considered to be correct. This idea can be applied to computational results, and also
for instance to music files. If different encoding algorithms are used to convert audio
data from a CD to MP3 files, the resulting files will probably not be identical but still
might be acceptable for a user. In this case too, based on some similarity measure
for audio data, acceptable deviations can be defined.

In [173], an attack on a specific CAPTCHA called “reCAPTCHA” was reported.
This attack exploits the fact that reCAPTCHA considers a reply to a challenge to
be correct if it is in a certain Levenshtein distance [94] from the correct reply. This
shows that the definition of an acceptance range for correct information can enable
new attacks, and thus should be avoided if possible.

6.4. Combination

An illustration of how the ideas of spot-checking and redundant requesting can be
combined is given by the reCAPTCHA system [163]. ReCAPTCHA uses distrib-
uted human effort to transcribe old documents. The old documents are scanned
and largely recognized by optical character recognition (OCR) algorithms. The sys-
tem uses different OCR algorithms and accepts a word if it is recognized as the same
word by all of them. The words on which the OCR algorithms disagree are passed to
a pool of unrecognized words. In order to use human input to recognize these words,
the system employs CAPTCHAs (see also Sect. 2.2.2). Such a CAPTCHA presents
two words to the user, one unrecognized word and one for which the correct tran-
scription is known. This is basically a special case of our spot-checking algorithm
from Chapter 3 with one real request and one challenge – they call a “control word”
what we call a “challenge”. If the user answers correctly the challenge, the reply
to the real request is recorded as plausible. If a plurality of votes, and a minimum
of 2 humans and one OCR, returned the same word to a real request, the word is
finally accepted. Since the mechanism uses plurality voting, it is principally suscep-
tible to the collusion of human users. A group of colluding humans would have to
maintain a collective database containing requests and the corresponding incorrect
replies. To make this attack effective though, the group would have to be quite large.
Although this is very unlikely to happen in the case of parsing old documents, be-
cause there is simply no obvious incentive to do so, it might become relevant for

125

6.4. Combination

other applications of this principle. Apart from that, we think it could be interesting
to use a trust model in order to ignore the input of unreliable humans here; as in
our proposed trust model, the replies to challenges could be used as evidence in
this case. An identification of a human by for instance his IP address would be a
prerequisite for that.

126

7. Summary and Perspectives

In this thesis, we have dealt with the problem of malicious information sources in
distributed information systems. We considered the case where the acquired infor-
mation cannot be verified directly. The research objective was to come up with mech-
anisms that identify trustworthy sources. The scope was set to objective information
with a binary degree of truth. Below, we first summarize the three main chapters.
Then, we restate our main contributions by answering the research questions that we
have asked in the introduction. Following this, we give some concluding remarks.
Finally, we identify avenues for possible continuation of research.

7.1. Spot-Checking with Challenges (Chapter 3)

In the first part of this chapter, we have proposed a mechanism that allows estima-
tion of the error rate of acquired information without explicitly checking it. This
is done by mixing the real requests with unidentifiable challenges, for which the
correct replies are known beforehand. The more challenges are used, the more ac-
curate is the estimate. Therefore, an optimal number of challenges emerges from a
trade-off between the costs accruing from preparing the challenges, and taking the
risk of having an inaccurate estimate. We argued that a uniform prior should be
used in the estimates, because it equally addresses different kinds of probabilistic
attack strategies. Intersection attacks can be rendered impossible by always using
the same challenges for the same real requests, and using new challenges for new
real requests. The complexity of a request is in O(n).

In the second part of the chapter, we showed how challenges can be used to
assess the accuracy of alternative classification components in an intrusion detection
system at runtime. This allows for selecting the most accurate components but also
for directing the intrusion detection system so that it pays more attention to the
most harmful network attacks. To this end, threats have to be modeled in form of
attack trees, and the expected damage of a threat has to be defined. Based on this,
challenges can be selected in a way that they better cover the most harmful attack
trees. Experiments suggest that this helps to improve the performance of the system
for the selected threats.

127

7.2. Modeling Trust in Information Sources (Chapter 4)

7.2. Modeling Trust in Information Sources (Chapter 4)

In this chapter, we first have developed a definition for “trust in information sources”,
and have analyzed certain difficulties when computationally modeling trust. We
have then proposed an evidence-based trust model that helps both to decide which
source to select next, and to reduce the overhead of spot-checking. In this model,
trust is represented in form of a trust value and an uncertainty value, for which we
proved the compliance with the two properties demanded by Wang and Singh [167].
We evaluated our trust model against different types of information sources: By
comparing the model to other models from the literature, we found that it reacts
appropriately to the different source types. Additionally, we have shown that a re-
duction of challenges is more cost-efficient if the creation of a challenge is relatively
cheap. Finally, we have extended the trust model with Boltzmann exploration, and
tested it in dynamic settings. We found that the performance of the trust model (i.e.,
how fast it converges to select trustworthy sources exclusively), depends mainly on
how the trust model is configured. This stresses the importance of the configuration
on the performance of a trust model. For this reason, we have proposed a generic
procedure that optimizes the parameters of evidence-based trust models. The proce-
dure uses a genetic algorithm to search for an attacker’s best attack strategy to any
given trust model configuration. By looking at the expected utilities of all configu-
rations against the best attack strategies, one can eventually select the configuration
with the highest expected utility for the trust model user. An interesting additional
finding from our experiments is that there are different optimal attack strategies for
different fractions of attackers: If there are only few attackers, they have to be much
more cautious, because it is harder for them to compete with the high number of
trustworthy sources; they can be more aggressive if they are numerous.

7.3. Collusion Detection for Redundant Requesting
(Chapter 5)

In this chapter, we have introduced an algorithm for collusion detection that can be
applied to redundant requesting. A theoretical analysis has revealed in which sce-
narios the algorithm is able to detect colluders. In general, both unconditional and
conditional colluders can be identified by means of correlation, the former more eas-
ily than the latter. We showed how amplification can help to improve the algorithm’s
chances of success for conditional colluders. To provide a proof of concept, we evalu-
ated a concrete implementation of the algorithm using two different graph clustering
algorithms, MCL and MinCTC. We found that the number of observed votes is cru-
cial to the accuracy of the algorithm: For unconditional colluders the number can
be relatively small; for conditional colluders many observations are required. MCL
clearly outperforms MinCTC both in terms of running time and accuracy. The al-
gorithm’s complexity is determined by the complexity of the clustering algorithm

128

7.4. Summary of Main Contributions

used, but is at least quadratic.

7.4. Summary of Main Contributions

In the following, we restate the research questions asked in the introduction and an-
swer them concisely. We provide references to the respectively most relevant section.

Q1: How may we apply spot-checking if the creation of spot checks at runtime is infeasible?

By merging real request with precomputed challenges, verifying the replies to the
challenges, and based on this, estimating the error rate to the real requests. (See also
Sect. 3.1)

Q2: What is the optimal number of challenges for a given number of real requests?

The number of challenges that minimizes the expected costs both for the creation
of the challenges needed and for the expected error made in the estimate. (See also
Sect. 3.2)

Q3: What does it mean to “trust in an information source?”

To believe that the source both is able to make sure that the information it provides
is correct, and that it does so. (See also Sect. 4.1.3)

Q4: What information should be used as evidence for a source’s trustworthiness?

All failures that are not excusable, and all successes that are not strategic. (See also
Sect. 4.1.2.3)

Q5: How may we build trust in an information source if we cannot directly verify the
information acquired from it?

By spot-checking a source with challenges and using the resulting error rate esti-
mates as statistical evidence for (un-)trustworthiness. (See also Sect. 4.2)

Q6: How may we systematically set optimal parameters of evidence-based trust models?

By selecting the configuration that yields the highest expected payoff against all of
its best responses. (See also Sect. 4.3.2)

Q7: How may we detect collusion attacks against redundancy with plurality voting?

By measuring how similar sources voted in the past, clustering them accordingly,
and marking all sources as suspects that do not belong to the largest cluster. (See
also Sect. 5.3.3)

129

7.5. Strengths and Challenges

7.5. Strengths and Challenges

Although spot-checking allows for an exact adjustment of the overhead, redundancy
still prevails in volunteer computing. The reason for this might be that in this sce-
nario sufficient sources are available to mean that the overhead is not the decisive
argument. However, there is evidence that spot-checking is less costly if collusion is
possible. In this thesis, we therefore explored both directions for sabotage tolerance:
the improvement of trust-enhanced spot-checking, and the extension of redundant
requesting with the capability of detecting collusion. While the former direction
aims to reduce the resulting overhead, the latter aims to optimize the robustness. More
precisely, the trustworthiness of a source can be used to reduce the number of spot
checks; however, our evidence-based trust model is generally sensitive to first-time
cheaters, and in the implausible worst case it can be deceived by chance. In contrast,
redundant requesting is very robust, provided that collusion attacks are prevented
and errors are not correlated across honest sources; on the other hand, the overhead
of redundant requesting must be at least 100%. Below we discuss further benefits
and limitations of the two approaches. A combination of the two approaches seems
to be very promising, and is discussed in the section on further work.

We have tested the robustness of our trust model against various attack strategies.
We found that on average it handles them appropriately. Still, this is no proof of
the presumption that the trust model is robust against other attack strategies as
well. This is a pointer to a general need for common methodologies of evaluation
in the field of computational trust modeling. Although many evidence-based trust
models have been proposed in the literature, no generally accepted benchmark for
trust models has been suggested. As a first step, we have developed a procedure
that determines an optimal configuration for a trust model. The proposed tuning
procedure assumes an attacker’s utility function to be known and that attackers are
perfectly rational. Under these assumptions, we can measure the expected utility of a
trust model against all attack strategies considered in the search space. Furthermore,
this allows trust models to be compared in terms of utility, and so can be seen as an
initial benchmark. However, because genetic algorithms are used in the procedure,
and these do not guarantee that a global optimum will be found, special attention
has to be paid to the configuration of the genetic algorithm.

During the application of the tuning procedure we found that if there are more
attackers, they will use more aggressive attack strategies to maximize their utility.
This is because it takes longer for the trust model to explore the set of potential
trustees. This shows that the Sybil attack can also be a problem for a trust model
that individually assesses the trustworthiness of different sources: Just by creating
a higher number of malicious sources, an attacker has more chances of going unde-
tected in trials while submitting incorrect information. Thus, measures against the
Sybil attack are necessary here too.

Having an effective collusion detection algorithm would make attacks other than
denial-of-service attacks harmless. Our collusion detection algorithm is able to de-
tect collusion attacks that would otherwise have a high chance of success. Never-

130

7.6. Further Work

theless, it suffers from two drawbacks. First, it requires a high number of observed
votes before it can make accurate classifications; this becomes especially unfavor-
able when there are high churn rates (see Sect. 6.3.1). Secondly, due to the fact that
collusion is only detected after it has happened, the affected results have to be dis-
carded or rechecked. Therefore it is crucial to strive for a reduction of the number
of observed votes required.

7.6. Further Work

7.6.1. Spot-Checking

To extend the spot-checking mechanism, degrees of truth could be considered, e.g.,
information being almost correct. This would for instance be the case if the chal-
lenges are taken from previously accepted replies, which may only be considered
to be correct with a certain probability. The error rate estimation would have to
be adapted (see also Sect. 3.1.4). Furthermore, the assumption of an objective truth
could be relaxed to account for opinions. This would certainly move the problem
closer to the problem addressed by collaborative filtering techniques [124]. Finally,
knowledge about a source could be used to adapt the assumed prior distribution
over time. This could be an alternative approach to our trust model which it would
be worthwhile to investigate.

7.6.2. Trust Model

Below, we describe different ways of how the trust model and its tuning procedure
can be extended and improved.

Incompetence vs. Maliciousness If trustworthy sources have a low error rate ρ, as
for instance in the case of volunteer computing [88], it is statistically justified to take
information found to be incorrect as evidence of untrustworthiness. Beyond this,
our trust model is not able to decide whether a trustee is incompetent or malicious.
This is not the aim of the current trust model, because either of the two properties
are undesirable for a source. Still, it might be interesting to have a closer look at
this distinction, because an incompetent source might become competent over time,
while a source found to be malicious once should probably never be considered
again. Under the assumption that an incompetent source can be described by some
error rate ρ, a statistical hypothesis test can be performed to this end. For a given
sequence of encountered error rates s, the “null-hypothesis” can be formulated as
follows:

H0 : The sequence of error rates s has with high probability been created by a source
that can be described by some error rate ρ.

131

7.6. Further Work

If this hypothesis has to be rejected, the source is probably malicious. Methods from
the field of pattern recognition could be helpful to see whether a source is following a
particular strategy. Once such a strategy is identified, the trust value and uncertainty
could be set to a very low value, or the source could be blacklisted to avoid that it is
still selected during the exploration phase.

Completeness of a Reply In our spot-checking based mechanisms, we assumed
that sources always return all replies to a set of requests. However, in practice, a
source might be able to answer only parts of a request. Time-outs can be applied to
decide when a source is considered as not having returned (parts of) a reply. Since
the source does not know what the challenges are, a partial reply is like a random
selection of requests to which no reply is returned. Our spot-checking mechanism
is also applicable in this situation, although the number of usable challenges might
shrink. In order to prefer sources that give complete replies, we could introduce
another criterion for the selection of a source, that measures how complete a reply
is expected to be. A weight can then determine how important this criterion is in
comparison to other criteria like the trustworthiness of a source. A source that does
not give a reply that it knows to be incorrect should be preferred over a source that
returns such a reply. For this reason, the trustworthiness should be weighted much
more heavily than the completeness rating.

Alternatively, for the trust model, a request that is not replied to could be treated
like an incorrect reply; however, to estimate the error rate of the replies, the missing
replies should not be taken into account, because they would distort the estimate.
Unfortunately, this approach would motivate sources to return replies even if they
know that they are incorrect, which is not a desirable situation; this is because a
missing reply to a real request would be taken as incorrect instead of unknown.

Trust Model Evaluation The evidence-based trust model proposed in this thesis is
based on probability theory. At the outset, we assume that an information provider
can be described by a single error rate ρ; in practice, for instance in the volunteer
computing scenario, workers can be characterized by such probabilities [88]. How-
ever, malicious sources such as a repetitive cheater cannot be described by such an
error rate. For these sources, the probabilistic derivation of our trust model is no
longer valid. Therefore, an experimental evaluation of the trust model especially
for malicious sources was necessary. For a finite set of attack strategies, we thus
compared the model to existing models from the literature. We found that it reacts
better to malicious behavior, or at least as well. However, this evaluation is restricted
to the attack strategies under consideration. We did not prove that the trust model
performs well for all possible attack strategies. Due to the dynamics of the selec-
tion process it would be hard to theoretically show that the model is robust against
Byzantine adversaries. Therefore, we evaluated the model experimentally. We delib-
erately selected attack strategies, and believe that we considered the most promising
ones. For any new attack strategy that is proposed though, the trust model has to

132

7.6. Further Work

be evaluated anew.
We measured the accuracy of the trust model in terms of the average error in the

error rate estimate, together with the respective standard deviations. Alternatively,
the accuracy of a trust model could be measured through the worst-case error. This
would especially be relevant when dealing with saboteurs (see Sect. 4.1.3.1). Their
intention is to maximize the error in the trustor’s error rate estimate. In such a case,
the trust model evaluation should be concerned with the maximal error in the error
estimate, rather than the average. Also, the tuning procedure has then to be adapted
such as to minimize the maximal error.

Trust Model Tuning In our current approach to trust model tuning, we have used
the genetic algorithm to search for a common attack strategy that is used by all
attackers. It would be too complex to allow attackers to use different strategies and
then to search for a constellation of attack strategies that is optimal for the attackers.
Still, it would be feasible to divide the attackers into collectives that compete with
each other for the optimal attack strategy. Similarly, different payoffs functions for
the attackers could be considered. The tuning procedure is based on game theory to
reason about the most likely attack strategies. This assumes that the utility function
of the attacker is known, and that the attacker acts in a perfectly rational manner.
Consideration of the cases of partially known utility functions and attackers with
bounded rationality is a topic for future work.

A way to improve the trust model would be to equip it with the capability of
adapting its configuration at runtime. In other words, given an initial starting con-
figuration, how can an operating trust model use information about the environment
to constantly improve its configuration. For example, fluctuations in the churn-rates
of P2P systems can be used to adapt the Boltzmann parameter. Also, an increase
in the error rates encountered can be an indicator of a high number of malicious
sources, which argues for a lower tolerance interval.

Context-Sensitivity First of all, depending on the scenario, the trust model should
be made context-sensitive, for instance to account for changes over time of what is
correct, or for the areas of expertise of the sources. For instance, techniques such
as Latent Semantic Indexing (LSI) [43], PLSI [72] or Concept Indexing [82] could be
employed to allow for defining the areas of expertise on the basis of acquired natural-
language text.

Reputation Systems Reputation systems should be considered for extending the
trust model in scenarios where there is more than one requester. These systems
can help, especially in the initial phase where a requester has not yet enough direct
experience, to make an informed choice of future sources. The impact of using
reputation information on the Boltzmann exploration approach would also be an
interesting field of study.

133

7.6. Further Work

7.6.3. Redundant Requesting and Collusion Detection

For redundant requesting, the idea of a flexible redundancy level would be an inter-
esting approach. This would make conditional collusion harder. Furthermore, in a
combination with trust modeling it could help to reduce the overhead. For instance,
the votes of sources could be weighted by their trustworthiness. Also, the more
trustworthy sources can be selected, the lower can the redundancy level be set. At-
tackers might want to exploit lower redundancy levels for collusion, and so adapted
techniques to detect and prevent collusion might be necessary. To further improve
the accuracy of the collusion detection algorithm, alternative clustering methods or
techniques from the field of pattern recognition could be investigated. Concerning the
integration of our algorithm into volunteer computing architectures, it would be in-
teresting to explore parallelization in order to run it in a distributed fashion with the
help of trustworthy workers. Finally, as discussed in Section 5.6, procedures have to
be defined for how to proceed with suspicious sources.

134

A. Proofs

A.1. Posterior Distribution

The following theorem concerns eq. (3.2).

Theorem A.1. Let X = Z − Y. If the prior P(Z) is chosen to be a binomial distribution
with parameter p, then X is also binomially distributed with the same parameter.

Proof. For arbitrary m, n ∈N.

p(z|y) = p(y|z)p(z)/p(y) (as by eq. (3.2)) (A.1)

=
(m

z−y)(
n
y)

(m+n
z)

p(z)/p(y) (as by eq. (3.4)) (A.2)

=
(m

z−y)(
n
y)

(m+n
z)

(
m + n

z

)
pz(1− p)m+n−z/p(y) (P(Z) is binom. prior) (A.3)

=

(
m

z− y

)(
n
y

)
pz(1− p)m+n−z/p(y) (canceling out (m+n

z)) (A.4)

=

(
m
x

)(
n
y

)
px+y(1− p)m+n−x−y/p(y) (replacing z by x + y) (A.5)

=

((
m
x

)
px(1− p)m−x

) (n
y)py(1− p)n−y

p(y)︸ ︷︷ ︸
independent of x

(rearranging) (A.6)

At this point consider a fixed y, and let us look at p(x|y), which is simply p(z− y|y).
Since z = y + x, we have p(z|y) = 0 for all z with z > y + m or z < y; p(x|y)
concerns exactly the part in between. Then, we can see that p(x|y) is proportional
to (m

x)px(1− p)m−x, which is the binomial distribution with parameter p. This is
because the remaining part is independent of X; in fact, it only determines the
position of the above mentioned interval [y, y + m]. Therefore, p(x|y) follows the
binomial distribution with parameter p, independent of what n and y is.

A.2. Expected Damage

In the following, we show that we do not increase or decrease the overall damage
when distributing the damage from attack trees to single attacks (Sect. 3.4.3).

135

A.3. Uncertainty

Theorem A.2. The definition of D(ai) (eq. (3.39)) satisfies the following property:

∑
i

D(ai) = ∑
j

D(Tj) . (A.7)

Proof. We first show that ∑i I(ai, T) = 1 :

∑
i

I(ai, T) = ∑
i

 1
|F(T)| ∑

Ck∈F(T),
with ai∈Ck

1
|Ck|

 (definition of I(ai, T)) (A.8)

=
1

|F(T)|∑i
∑

Ck∈F(T),
with ai∈Ck

1
|Ck|

(rearranging) (A.9)

=
1

|F(T)| ∑
Ck∈F(T)

=1︷ ︸︸ ︷
∑

ai∈Ck

1
|Ck|

(carefully switching sums) (A.10)

=
1

|F(T)| · |F(T)| (#clauses= |F(T)|) (A.11)

= 1 . (A.12)

Now, we can prove the theorem:

∑
i

D(ai) = ∑
i

(
∑

j
D(Tj) · I(ai, Tj)

)
(definition of D(ai)) (A.13)

= ∑
j

D(Tj)

=1︷ ︸︸ ︷
∑

i
I(ai, Tj) (rearranging/shown above) (A.14)

= ∑
j

D(Tj) . (A.15)

A.3. Uncertainty

In the following, we show that the variance of the beta distribution fulfills the two
properties that – following Wang and Singh [167] – a measure of uncertainty should
have.

Let α and β be the two shape parameters of the beta distribution. The variance of
the beta distribution is then given by (see also Fig. A.1(a)):

σ2 =
αβ

(α + β)2(α + β + 1)
. (A.16)

136

A.3. Uncertainty

1.5
2
2.5
3
3.5
4 1 1.5 2 2.5 3 3.5 4

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

α

β

σ
2

0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

(a) variance

1.5
2
2.5
3
3.5
4 1 1.5 2 2.5 3 3.5 4

0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3

α

β

σ

0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3

(b) standard deviation

Figure A.1.: Deviations from the mean of the beta distribution.

The first theorem states that for a fixed amount of evidence and an increasing conflict
within the evidence (peaking at α = β), the variance strictly increases. The second
theorem states that for an increasing amount of evidence and fixed conflict, the
variance strictly decreases. Since the square root preserves (strict) monotonicity1, the
theorems retain their validity also for the standard deviation of the beta distribution
(see Figure A.1(b)).

Theorem A.3. For α, β ≥ 1 and fixed α + β, the variance of the beta distribution strictly
increases for increasing α up to α = β and strictly decreases afterwards.

Proof. Let α, β ≥ 1 and γ = α + β be constant. We can express β by γ− α and get for
the variance:

σ2 =
α(γ− α)

(α + (γ− α))2(α + (γ− α) + 1)
(A.17)

=
γα− α2

γ2(γ + 1)
. (A.18)

The first derivative with respect to α can directly be seen:

dσ2

dα
=

γ− 2α

γ3 + γ2 . (A.19)

At this point, we can see that the only extremal point is at α = γ/2 = (α + β)/2, so
where α = β. To prove the theorem, we only have to check that the second derivative
at this point is negative and so it is a maximum at this point. The second derivative
is:

d2σ2

dα2 =
−2

γ3 + γ2 . (A.20)

Clearly, the second derivative is negative for all possible γ ≥ 1.

1∀a, b ∈ R+ : a > b⇔
√

a >
√

b

137

A.3. Uncertainty

Theorem A.4. For α, β ≥ 1, and fixed conflict α/β, the variance of the beta distribution
strictly decreases for increasing α + β.

Proof. Let α, β ≥ 1 and ξ = α/β be constant. We can express β by α/ξ and get for
the variance:

σ2 =
α2/ξ

(α + α
ξ)

2(α + α
ξ + 1)

. (A.21)

It suffices to show that the first derivative of this variance with respect to α is nega-
tive:

dσ2

dα
=

d
dα

 α2

ξ(α2 + 2α2

ξ + α2

ξ2)(α + α
ξ + 1)

 (A.22)

=
d

dα

 1
ξ
α2 (α2 + 2α2

ξ + α2

ξ2)(α + α
ξ + 1)

 (A.23)

=
d

dα

(
1

ξ(1 + 2
ξ +

1
ξ2)
· ((1 + 1

ξ)α + 1)−1

)
(A.24)

=

>0︷ ︸︸ ︷
1

ξ(1 + 2
ξ +

1
ξ2)
· − 1 ·

>0︷ ︸︸ ︷
(1 + 1

ξ)

>0︷ ︸︸ ︷
((1 + 1

ξ)α + 1)−2

︸ ︷︷ ︸
<0

. (A.25)

Normalization of Standard Deviation From Theorem A.4 it follows that the stan-
dard deviation σ takes its maximum value for α, β ≥ 1 at α = β = 1, which is 1

2
√

3
.

To normalize σ to the interval (0, 1], it has thus to be multiplied by 2
√

3.

138

B. Computing Margins of Error

In the following, we show how to find the margin of error for means and standard
deviations. The computations are applicable in the case where both the mean (µ)
and the standard deviation (σ) of the underlying distribution are unknown. Based
on this, we introduce one-sided margins of error, which are used in Section 3.4.2.

B.1. Margin of Error for Means

First of all, we need to look at the following standardized variable:

T =
µ̄− µ

s/
√

n
. (B.1)

This variable T expresses the distance of the estimated mean (µ̄) from the real mean
(µ) in standard deviation units. Assuming that the “underlying” probability distri-
bution is Normal, it can be shown that this quantity T follows the t-distribution [141,
p. 159], which only depends on n. So, we do not know µ, but we can compute
the distribution of T. Now, let tn−1,C , or short t, denote the “critical value”; the

-t t

C

0

Figure B.1.: Critical values for a t-distribution.

two values t and − t delimit symmetrically on the right and on the left an area of
size C under the t-distribution with parameter n − 1 (see figure B.1). Because the

139

B.2. Margin of Error for Standard Deviations

t-distribution has mean 0, a random value is then with probability C in [− t, t]. To
state that the mean µ is with confidence C within the interval [µ̄− ∆µ, µ̄ + ∆µ], we
have to define the margin of error ∆µ as follows:

∆µ = tn−1,C ·
s√
n

. (B.2)

In other words, we simply make sure that we get the right unit (compare to eq. (B.1)).
The critical values can be computed, by solving C =

∫ t
− t Tn−1 for t, where Tn−1

denotes the t-distribution with n− 1 degrees of freedom (see [141, p. 115]). These
values can be precomputed and stored in a database. Table B.1 shows some critical

Table B.1.: Some critical values tn−1,C of the t-distribution (taken from [107]).

n− 1 C = 0.9 C = 0.95 C = 0.99 C = 0.999

1 6.314 12.71 63.66 636.6

2 2.920 4.303 9.925 31.60

3 2.353 3.182 5.841 12.92

4 2.132 2.776 4.604 8.610

5 2.015 2.571 4.032 6.869
...

values for selected n and C. Because of the central limit theorem1, the above margin of
error is approximately correct for all kinds of distributions, when n becomes large
enough. For smaller n, the distribution of µ̄ is not necessarily Normal, and so ∆µ

can get less and less accurate. However, it is the “best” we can do if the type of the
underlying probability distribution and its standard deviation are not known.2

B.2. Margin of Error for Standard Deviations

For the standard deviation we look at the following variable:

S =
(n− 1)s2

σ2 . (B.3)

For an underlying normal distribution with variance σ2, S is chi-square distributed [37,
p. 278]. And so, again, although we do not know σ, we can estimate the error of

1According to the central limit theorem, the sample mean µ̄ is normally distributed with mean µ
and standard deviation σ/

√
n for large n [107, p. 281].

2Note that if we knew the actual standard deviation σ of the underlying distribution, we could use
the more precise critical values z∗ (see also [107, p. 355])

140

B.2. Margin of Error for Standard Deviations

s2. And again, we need to find the two critical values that delimit an area of C un-
der the chi-distribution. To cut off the same area on the left and on the right, the
critical values have to cut off an area of 1−C

2 each, because then the area in-between
is 1 − 1−C

2 = C. Because the chi-square distribution is not axially symmetric, we
get two different critical values, and later, two different margins of error. Let χ2

p,n−1

1-p

p

0

Figure B.2.: Critical value for a chi-square distribution with n− 1 degrees of freedom.

denote the critical value that delimits an area of p under the chi-square distribution
to the left of the critical value (see also figure B.2). A critical value χ2

p,n−1 can be

Table B.2.: Some critical values χ2
p,n−1 of the chi-square distribution (taken from

[141]).

n− 1 p = 0.005 p = 0.01 p = 0.99 p = 0.995

1 0.0000 0.0002 6.63 7.88

2 0.0100 0.0201 9.21 10.6

3 0.0717 0.115 11.3 12.8

4 0.207 0.297 13.3 14.9

5 0.412 0.554 15.1 16.7
...

computed by solving p =
∫ χ2

p,n−1
0 χ2(n− 1) for χ2

p,n−1, where χ2(n − 1) marks the
chi-square distribution with n− 1 degrees of freedom (see [141, p. 115]). Table B.2
shows some critical values.

141

B.3. One-Sided Margins Of Error

The desired critical value for the left side is then simply χ2
1−C

2 ,n−1
; the desired

critical value for the right side is χ2
1+C

2 ,n−1
, because the area to the right of it is

1− 1+C
2 which is the desired 1−C

2 . So, for a chi-square distributed variable S it holds:

P(χ2
1−C

2 ,n−1
< S < χ2

1+C
2 ,n−1

) = C . (B.4)

Substituting S (see eq. (B.3)), and solving for σ2 gives:

P

 (n− 1)s2

χ2
1+C

2 ,n−1

< σ2 <
(n− 1)s2

χ2
1−C

2 ,n−1

 = C . (B.5)

The two margins of error ∆′σ (the left one) and ∆′′σ (the right one) can directly be
seen:

∆′σ =

√√√√ (n− 1)s2

χ2
1+C

2 ,n−1

, ∆′′σ =

√√√√ (n− 1)s2

χ2
1−C

2 ,n−1

. (B.6)

So, the actual standard deviation σ is with a confidence of C in [s − ∆′σ, s + ∆′′σ].
As for ∆µ, the higher n, or more Normal the underlying distribution is, the more
accurate is ∆µ.

Computational Complexity Given a sample standard deviation s, assuming that the
critical values have been precomputed and are stored in tables, the computations
of the margins of error, both for the mean (eq. (B.2)) and the standard deviation
(eq. (B.6)), involve only single operations, and so are in O(1).

B.3. One-Sided Margins Of Error

In Section 3.4.2, we always make use of what we call a “one-sided margin of error”.
A one-sided margin of error provides the confidence that a mean (or standard devi-
ation) is either not greater or not smaller than a single critical value. One can solve
this by adjusting the integral boundaries for the computations of the critical values.
However, we can also compute the actual confidence by adding the probability cor-
responding to the area, which we cut off on one side. Let C ′ be the confidence as
used in the previous sections. Then, the area, which we cut off on one side is 1−C ′

2 .
So, the actual confidence C we get for a one-sided margin of error is:

C = C ′ + 1− C ′
2

=
C ′ + 1

2
. (B.7)

The other way around, if we want to have confidence C, we need to look up the
critical values for confidence C ′ = 2C − 1. The least possible confidence we can
choose is C = 0.5 so that C ′ = 0, which means that we guarantee with confidence 0.5
a value greater (or smaller) than the mean.

142

C. Damage of Attack Classes

Below, we show how the priorities are computed for a set of two very simple example
attack trees T1 and T2 shown in Figure C.1 and C.2 respectively (next page). For the
sake of the example, we estimate the damages of the trees to be D(T1) = 900 and
D(T2) = 50. The two trees can be transformed into propositional logic formulae:

(a1) ∧ ((a2 ∧ a3) ∨ (a4 ∧ a5)) , (C.1)
(a6 ∨ a7 ∨ a8) . (C.2)

Bringing them into canonical DNF and applying the Quine-McCluskey algorithm
gives (in set notation):

F(T1) = {{a1, a2, a3}, {a1, a4, a5}} , (C.3)
F(T2) = {{a6}, {a7}, {a8}} . (C.4)

We can now compute I(ai, Tj) for all attacks. First, let us look at I(a1, T1):

I(a1, T1) =
1

|F(T1)|

(
1
|C1|

+
1
|C2|

)
= 1

2

(
1
3 +

1
3

)
= 1

3 . (C.5)

Analogously we obtain:

I(a2, T1) =I(a3, T1) = I(a4, T1) = I(a5, T1) =
1
2 ·

1
3 = 1

6 . (C.6)

For attack tree T2 we get:

I(a6, T2) = I(a7, T2) = I(a8, T2) =
1
3 . (C.7)

The overall damage of attack a1 can then be computed:

D(a1) = D(T1) · I(a1, T1) + D(T2) ·
=0︷ ︸︸ ︷

I(a1, T2) = 900 · 1
3 = 300 . (C.8)

In the same way, we obtain for the other attacks:

D(a2) = D(a3) = D(a4) = D(a5) = 900 · 1
6 = 150 , (C.9)

D(a6) = D(a7) = D(a8) =
50
3 . (C.10)

143

B.3. One-Sided Margins Of Error

server takeover

a1 exploit

buffer overflow

a2 a3

pwd. brute force

a4 a5

Attack Description Att. class

a1 horizontal scan A1
a2 fingerprinting A2
a3 buffer overflow A3
a4 SSH pwd. bf. request A4
a5 SSH pwd. bf. response A4

Figure C.1.: Example attack tree T1.

file sharing

a6 a7 a8

Attack Description Att. class

a6 download A5
a7 upload A5
a8 directory node A5

Figure C.2.: Example attack tree T2.

Finally, we can compute the attack class damages:

D(A1) = D(A4) = 300 , (C.11)
D(A2) = D(A3) = 150 , (C.12)
D(A5) = 50 . (C.13)

So, for example, a fraction of 300
950 = 6

19 of the challenges is chosen from attack class
A1, and one out of 19 challenges comes from attack class A5.

144

D. Results of Trust Model Tuning

Table D.1 shows all computed expected utilities of the master against the optimal
attack strategies of the attackers. These utilities have been computed for differ-
ent fractions of attackers fa among the workers. The last column represents the
weighted average of the utilities; the weights 0.3, 0.3, 0.2 and 0.2 (in this order) have
been applied. The six best combined utilities are marked. The results are shown in
Figure D.1, D.2, D.3, D.4 and D.5.

Table D.1.: Utilities of the master against optimal attack strategies.

sT UT
B+ ε W fa = 0 fa = 0.1 fa = 0.5 fa = 0.9 combined

0 0.1 W1 9.6273 9.6495 9.8142 9.9647 9.7388
0.05 0.1 W1 9.6271 9.6765 9.8027 9.9668 9.745
0.1 0.1 W1 9.6272 9.6636 9.8103 9.9652 9.7424
0.25 0.1 W1 9.6304 9.6605 9.7958 9.9662 9.7397
0.5 0.1 W1 9.6288 9.6717 9.8185 9.9692 9.7477
0.75 0.1 W1 9.6215 9.6749 9.8185 9.966 9.7458

1 0.1 W1 9.6339 9.6758 9.8236 9.9676 9.7511
1.5 0.1 W1 9.6309 9.6668 9.8171 9.968 9.7463
2 0.1 W1 9.6258 9.6583 9.8298 9.9646 9.7441
5 0.1 W1 9.6259 9.6736 9.8303 9.967 9.7493
0 0.25 W1 9.7802 9.7942 9.7998 9.6154 9.7554

0.05 0.25 W1 9.7854 9.8119 9.761 9.522 9.7358
0.1 0.25 W1 9.7937 9.7932 9.8329 9.7251 9.7877
0.25 0.25 W1 9.8245 9.82 9.9069 9.6816 9.811
0.5 0.25 W1 9.8514 9.8626 9.9259 9.7899 9.8573
0.75 0.25 W1 9.8707 9.8907 9.9325 9.8392 9.8828

1 0.25 W1 9.8936 9.9387 9.9886 9.8828 9.9184
1.5 0.25 W1 9.8927 9.9075 9.9466 9.8281 9.895
2 0.25 W1 9.9005 9.9151 9.9546 9.7444 9.8845
5 0.25 W1 9.9278 9.9348 9.8001 9.7617 9.8711
0 0.5 W1 9.7796 9.7879 9.6263 9.5988 9.7153

0.05 0.5 W1 9.7815 9.7993 9.757 9.7396 9.7736
0.1 0.5 W1 9.7973 9.8042 9.7989 9.7303 9.7863
0.25 0.5 W1 9.8132 9.8315 9.9121 9.6993 9.8157

continued on next page . . .

145

B.3. One-Sided Margins Of Error

. . . continued from previous page

B+ ε W fa = 0 fa = 0.1 fa = 0.5 fa = 0.9 combined

0.5 0.5 W1 9.8557 9.8669 9.8029 9.0901 9.6954
0.75 0.5 W1 9.875 9.8742 9.786 9.5225 9.7865

1 0.5 W1 9.8818 9.8978 9.938 9.8197 9.8854
1.5 0.5 W1 9.9009 9.9134 9.9493 8.961 9.7263
2 0.5 W1 9.9038 9.9165 9.9517 9.2688 9.7902
5 0.5 W1 9.9295 9.9119 9.4712 9.1308 9.6728
0 0.1 W2 9.6303 9.6443 9.8142 9.9651 9.7382

0.05 0.1 W2 9.6244 9.6499 9.8164 9.9609 9.7377
0.1 0.1 W2 9.6244 9.6648 9.817 9.9585 9.7419
0.25 0.1 W2 9.6238 9.6526 9.8068 9.9588 9.736
0.5 0.1 W2 9.6328 9.6704 9.826 9.9657 9.7493
0.75 0.1 W2 9.6225 9.6624 9.8229 9.9637 9.7428

1 0.1 W2 9.6279 9.6787 9.8233 9.9657 9.7498
1.5 0.1 W2 9.6226 9.6732 9.8291 9.9678 9.7481
2 0.1 W2 9.6231 9.6657 9.8296 9.9672 9.746
5 0.1 W2 9.6384 9.6672 9.8346 9.9709 9.7528
0 0.25 W2 9.7734 9.7687 9.7537 9.5445 9.7223

0.05 0.25 W2 9.7762 9.7991 9.7761 9.7686 9.7815
0.1 0.25 W2 9.7955 9.8107 9.7581 9.5567 9.7448
0.25 0.25 W2 9.8255 9.832 9.9134 9.6887 9.8177
0.5 0.25 W2 9.8493 9.8758 9.9293 9.9262 9.8886
0.75 0.25 W2 9.8668 9.8763 9.9162 9.9022 9.8866

1 0.25 W2 9.8826 9.8889 9.9427 9.9869 9.9174
1.5 0.25 W2 9.8953 9.9113 9.9495 9.8543 9.9027
2 0.25 W2 9.9092 9.9192 9.9569 9.7481 9.8895
5 0.25 W2 9.9285 9.9327 9.8144 9.736 9.8684
0 0.5 W2 9.776 9.7934 9.7061 9.599 9.7319

0.05 0.5 W2 9.7897 9.8055 9.6232 9.4801 9.6992
0.1 0.5 W2 9.7963 9.8139 9.9063 9.4352 9.7514
0.25 0.5 W2 9.8158 9.8473 9.7407 9.764 9.7999
0.5 0.5 W2 9.8572 9.8773 9.9052 9.5854 9.8184
0.75 0.5 W2 9.8762 9.8877 9.934 9.593 9.8346

1 0.5 W2 9.8917 9.8935 9.9447 9.1202 9.7486
1.5 0.5 W2 9.8966 9.9052 9.9489 8.9821 9.7267
2 0.5 W2 9.906 9.9151 9.9581 9.3999 9.8179
5 0.5 W2 9.9285 9.7894 9.4723 9.1369 9.6372
0 0.1 W3 9.6196 9.6608 9.819 9.965 9.7409

0.05 0.1 W3 9.626 9.6664 9.8095 9.9609 9.7418
0.1 0.1 W3 9.6178 9.6529 9.8138 9.9636 9.7367
0.25 0.1 W3 9.6335 9.6696 9.7981 9.9619 9.7429
0.5 0.1 W3 9.6362 9.6626 9.8156 9.9652 9.7458
0.75 0.1 W3 9.6201 9.6706 9.8243 9.9673 9.7455

1 0.1 W3 9.623 9.6703 9.8297 9.9675 9.7474
1.5 0.1 W3 9.6313 9.6611 9.8257 9.9664 9.7462

continued on next page . . .

146

B.3. One-Sided Margins Of Error

. . . continued from previous page

B+ ε W fa = 0 fa = 0.1 fa = 0.5 fa = 0.9 combined

2 0.1 W3 9.6256 9.6795 9.8347 9.9702 9.7525
5 0.1 W3 9.6175 9.6726 9.8349 9.967 9.7474
0 0.25 W3 9.7675 9.7835 9.7567 9.7322 9.7631

0.05 0.25 W3 9.7819 9.796 9.8675 9.7293 9.7928
0.1 0.25 W3 9.7943 9.8117 9.8917 9.7245 9.805
0.25 0.25 W3 9.8183 9.8376 9.9108 9.7008 9.8191
0.5 0.25 W3 9.8527 9.8617 9.9219 9.8523 9.8692
0.75 0.25 W3 9.8686 9.8922 9.9373 9.9886 9.9134

1 0.25 W3 9.8854 9.8882 9.9461 9.8737 9.896
1.5 0.25 W3 9.891 9.9047 9.9493 9.8027 9.8891
2 0.25 W3 9.9048 9.9156 9.9517 9.8457 9.9056
5 0.25 W3 9.927 9.9386 9.9596 9.7985 9.9113
0 0.5 W3 9.7849 9.7759 9.8075 9.6339 9.7565

0.05 0.5 W3 9.7853 9.8015 9.6787 9.5842 9.7286
0.1 0.5 W3 9.8 9.7927 9.8079 9.5677 9.7529
0.25 0.5 W3 9.8154 9.8393 9.9063 9.5652 9.7907
0.5 0.5 W3 9.8572 9.8537 9.9277 9.8215 9.8631
0.75 0.5 W3 9.8804 9.8718 9.9383 9.4316 9.7997

1 0.5 W3 9.8885 9.8977 9.9459 9.4899 9.823
1.5 0.5 W3 9.8979 9.9112 9.8511 9.4554 9.804
2 0.5 W3 9.9057 9.9144 9.9548 9.002 9.7374
5 0.5 W3 9.9284 9.9362 9.5286 9.2062 9.7063

0 1 2 3 4 5
B

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

(a) W1

0 1 2 3 4 5
B

(b) W2

0 1 2 3 4 5
B

9

9.2

9.4

9.6

9.8

10

(c) W3

Figure D.1.: Expected utilities of the master against optimal attack strategies (fa = 0).

147

B.3. One-Sided Margins Of Error

0 1 2 3 4 5
B

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

(a) W1

0 1 2 3 4 5
B

(b) W2

0 1 2 3 4 5
B

9

9.2

9.4

9.6

9.8

10

(c) W3

Figure D.2.: Expected utilities of the master against optimal attack strategies (fa =
0.1).

0 1 2 3 4 5
B

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

(a) W1

0 1 2 3 4 5
B

(b) W2

0 1 2 3 4 5
B

9

9.2

9.4

9.6

9.8

10

(c) W3

Figure D.3.: Expected utilities of the master against optimal attack strategies (fa =
0.5).

148

B.3. One-Sided Margins Of Error

0 1 2 3 4 5
B

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

(a) W1

0 1 2 3 4 5
B

(b) W2

0 1 2 3 4 5
B

9

9.2

9.4

9.6

9.8

10

(c) W3

Figure D.4.: Expected utilities of the master against optimal attack strategies (fa =
0.9).

0 1 2 3 4 5
B

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ε

(a) W1

0 1 2 3 4 5
B

(b) W2

0 1 2 3 4 5
B

9.6

9.65

9.7

9.75

9.8

9.85

9.9

9.95

10

(c) W3

Figure D.5.: Expected utilities of the master combined for different scenarios.

149

E. Correlation of Sources

E.1. Computing Correlation

In this section, we show how the correlations between pairs of honest sources, col-
luders and mixed pairs can be computed. As argued in Section 5.4.1, we assume that
the set of sources S is large, so that we can use sampling with replacement. First,
it is shown how the correlations are computed for UCm and CCm attacker models
respectively. Then, the resulting correlations are shown.

E.1.1. Case UCm Attackers

In this case, colluders decide to collude with a probability of pcam, independent of
how many colluders are in the vote.

E.1.1.1. Case h&h

See Section 5.4.1.

E.1.1.2. Case h&c

Given that they are in the same vote, a honest source A and a colluder B are in the
same group (plurality/minority), iff any of the following is the case:

• both return the correct information: P1 = (1− ρ) · (1− pcam) .

• A returns incorrect information, and B colludes: P2 = ρ · pcam, and the colluder
is not in a plurality, i.e., there are more correct honest sources (j) than colluders
(i) in the remaining vote:

P3 =
d k−3

2 e
∑
i=0

(
k− 2

i

)
fa

i ·
k−2−i

∑
j=i+1

(
k− 2− i

j

)
ph

j · pw
k−2−i−j . (E.1)

• honest source A returns the correct information, and the colluders decide to
collude: P4 = (1− ρ) · pcam, and there is a tie in the vote, i.e., there are equally

150

E.1. Computing Correlation

many correct honest sources as colluders (in the remaining vote):

P5 =
b k−2

2 c
∑
i=0

(
k− 2

i

)
fa

i ·
(

k− 2− i
i

)
ph

i · pw
k−2−2i (E.2)

=
b k−2

2 c
∑
i=0

k− 2
i!2 · (k− 2− 2i)!

· fa
i · ph

i · pw
k−2−2i , (E.3)

which is a sum over the PMF of the multinomial distribution.

• honest source A returns incorrect information, and the colluders decide to not
collude, and so return the correct information: P6 = ρ · (1− pcam), but at the
same time there is no other colluder and no correct honest source (otherwise
the colluder B would be in the plurality, and A not): P7 = pw

k−2 .

Again, the cases are mutually exclusive, and we can add them up:

pUCm
c (h&c) = P1 + P2 · P3 + P4 · P5 + P6 · P7 . (E.4)

E.1.1.3. Case c&c

Two colluders take collectively the same decision, so are always in the same group:

pUCm
c (c&c) = 1 . (E.5)

E.1.2. Case CCm Attackers

In this case, colluders decide to collude with a probability of pcam, but only in votes
they are sure to win, that is where there are at least

⌈
k+1

2

⌉
many colluders.

E.1.2.1. Case h&h

Given that they are in the same vote, two honest sources A and B are also together
in the same group (plurality/minority), iff any of the following is the case:

• they both return the correct information: P1 = (1− ρ)2 .

• they both return incorrect information: P2 = ρ2 .

• exactly one of them returns the correct information: P3 = 2 · ρ · (1− ρ), and,

– apart from them there are only incorrect honest sources: P4 = pw
k−2, or,

– there are at least
⌈

k+1
2

⌉
colluders and these decide to collude:

P5 = pcam ·
k−2

∑
i=d k+1

2 e

(
k− 2

i

)
fa

i · (1− fa)
k−2−i . (E.6)

151

E.1. Computing Correlation

Because these cases are mutually exclusive, the correlation is given by:

pCCm
c (h&h) = P1 + P2 + P3 · (P4 + P5) . (E.7)

E.1.2.2. Case h&c

Given that they are in the same vote, a honest source A and a colluder B are together
in the (plurality/minority), iff any of the following is the case:

• A returns the correct information: P1 = (1− ρ), and the colluders also return
the correct information, which means that either:

– the colluders are not in the majority (note that B is counted in):

P2 =
b k−2

2 c
∑
i=0

(
k− 2

i

)
fa

i · (1− fa)
k−2−i , (E.8)

– or they are in the majority, but decide to not collude: P3 = (1− P2) · (1−
pcam) .

Because a honest source can only be in the plurality if it returns the correct informa-
tion, and a conditional colluder is never in the minority, we do not have to consider
the cases in which A returns incorrect information. The above cases can be combined
as follows:

pUCm
c (h&c) = P1 · P2 + P1 · P3 . (E.9)

E.1.2.3. Case c&c

Two colluders take collectively the same decision, so are always in the same group:

pCCm
c (c&c) = 1 . (E.10)

E.1.3. Figures

In this section, we show the correlations of cases, which have not been shown in
Section 5.4.2, but give interesting insights. Figure E.1 shows the correlations for CCm
attackers when a higher redundancy level k = 5 is used. The difference between the
correlation of h&h and h&c is smaller compared to the case of k = 3 (compare to
Fig. 5.5 in Sect. 5.4.2). The reason is that for higher redundancy levels, the conditional
colluders are for smaller fa less often in the majority. As a consequence, they collude
less often and so correlate more with honest sources. This makes them again less

152

E.2. Amplification

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p c

fa

c&c
h&h

h&c (pcam=0.2)
h&c (pcam=0.6)

h&c (pcam=1)

Figure E.1.: Correlations between different types of sources (CCm, k = 5, ρ =
0.00221).

harmful but also harder to detect. The correlations for UCm and k = 5 are not shown
because they are similar to the case of k = 3 (see Fig. 5.5 in Sect. 5.4.2).

Figure E.2 shows correlations for scenarios in which honest sources would have
high error rates (ρ = 0.0335 with respect to [88]). Both in the case of UCm and CCm,
h&h is lower, that is the honest sources correlate less with each other. Therefore
the differences between h&c and h&h become smaller, which makes it again harder
to find the borderline between colluders and honest sources for small fa. Still, de-
pending on the camouflage probability pcam, the difference in the UCm case is still
big.

E.2. Amplification

Pairs consisting of a honest source and a colluder in most cases correlate less –
both for UC and CC – than pairs consisting only of colluders or honest sources
(see Sect. 5.4.2). Put simply, if this difference is big, it is easier to detect colluders.
In the CC case, the difference becomes smaller for small ratios of colluders fa. In
order to increase this difference for the clustering algorithm, the correlation can be
amplified by exponentiation with some parameter θ. For a, b ∈ (0, 1) with a >

b and θ > 1, it holds: a
b < aθ

bθ . This means that through exponentiation, higher
correlations become relatively even higher compared to lower correlations. If the
used clustering algorithm interprets relations between edge weights in a relative
manner (e.g., probabilistically), exponentiation can generally be used as amplifier.
When the relations are interpreted as absolute differences, exponentiation can help
as well, but can make the situation also worse, as we will discuss in the following.

The difference between two correlation values a and b, with a > b, decreases in
some cases for increasing exponentiation. This is shown in Figure E.3 where the

153

E.2. Amplification

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p c

fa

c&c
h&h

h&c (pcam=0.2)
h&c (pcam=0.6)

h&c (pcam=1)

(a) UCm

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

p c

fa

c&c

h&h
h&c (pcam=0.2)
h&c (pcam=0.6)

h&c (pcam=1)

(b) CCm

Figure E.2.: Correlations between different types of sources (k = 3, ρ = 0.0335).

difference for the correlations of h&h and h&c pairs is depicted when applying
different θ (the figure for pc(c&c)− pc(h&c) would look similar). As mentioned in
Section 5.4.2, high differences in correlation of h&c and h&h/c&c pairs mean good
identifiability. So, a lower difference makes colluders harder to identify, which is
not desirable. While the amplification helps in the CC case for θ up to about 20, it
makes it worse in the UC case (for θ higher than ca. 1.4). Still, the differences in the
UC case remain high. Hence, a choice of θ = 20 for instance makes it much easier to
spot h&c pairs in the CC case but not much harder in the generally easier UC case.
For camouflage colluders with a low camouflage rate, the amplification helps also in
the unconditional case (Fig. E.3(c)). For the case of very few conditional camouflage
colluders (Fig. E.3(d), fa = 0.01), the amplification helps the colluders and makes
the difference worse; however, in this case colluders cannot be recognized anyway.
Finally, we have to keep in mind that in our algorithm, we are making an estimate of
the actual correlation. Errors in estimates are higher for fewer observations, and so,
the amplification has to be used carefully when there are few observations, because
it amplifies the errors in the estimates as well.

The amplification can be carried out by element-wise exponentiation of the corre-
lation matrix with scalar θ. Figure E.4 shows the correlation matrices for the same
HS , before and after amplification (θ = 10). This illustrates that amplification makes
h&c pairs better discernible.

154

E.2. Amplification

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

p c
(h
&
h)
-p
c(
h&
c)

θ

fa=0.5
fa=0.1
fa=0.01

(a) UC

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

pc
(h
&
h)
-p
c(
h&
c)

θ

fa=0.5
fa=0.2
fa=0.1
fa=0.05
fa=0.01

(b) CC

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40

p c
(h
&
h)
-p
c(
h&
c)

θ

fa=0.5
fa=0.1
fa=0.01

(c) UCm, pcam = 0.2

-0.1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 15 20 25 30 35 40

p c
(h
&
h)
-p
c(
h&
c)

θ

fa=0.5
fa=0.2
fa=0.1
fa=0.05
fa=0.01

(d) CCm, pcam = 0.2

Figure E.3.: Effect of amplification on pc(h&h)− pc(h&c) .

0

20

40

60

80

100

0 20 40 60 80 100

so
ur

ce
 j

source i

0

0.2

0.4

0.6

0.8

1

sa
m

pl
e

co
rr

el
at

io
n

(a) θ = 1

0

20

40

60

80

100

0 20 40 60 80 100

so
ur

ce
 j

source i

0

0.2

0.4

0.6

0.8

1

sa
m

pl
e

co
rr

el
at

io
n

(b) θ = 10

Figure E.4.: Correlation matrix based on 100 votes/pair for CC case (|S| = 100).

155

Nomenclature

Introduction

S Set of all available information sources 12
F Set of existing facts . 9
R A single response . 9
Q A single request . 9
v(x) Explicit verification function . 9

Chapter 3

A Attack class . 47
α Attack score for malicious flow . 43
a A specific network attack . 48
λ̄ Sample mean for attack scores of legitimate flows 44
ᾱ Sample mean for attack scores of malicious flows 44
CDFy Cumulative distribution function for given y 34
C Confidence for a margin of error . 45
K Set of known facts . 31
λ Attack score for legitimate flow . 44
E Expected value . 35
∆L Left margin of error . 45
∆R Right margin of error . 45
k Redundancy level: A request is replicated k times 41
sλ Sample standard deviation for attack scores of legitimate flows . 44
sα Sample standard deviation for attack scores of malicious flows . . 44
ai Aggregator i . 45
Ci ith clause of a propositional logic formula in DNF (as set) 49
D Expected damage of realized threats or single attacks 47
F(T) An attack tree in minimal DNF represented as set of clauses . . . 49
I(a, T) Importance of attack a in attack tree T 50
imax Maximum number of incorrect replies to M that are tolerated . . 37
kmax Only the topmost kmax aggregators are considered 46

156

Nomenclature

M Set of real requests . 31
m Number of real requests . 32
N Set of challenges . 31
n Number of challenges . 32
r Overall rating of an aggregator . 44
ri Rating of an aggregator for batch i . 44
T Attack tree . 48
X Random variable for the number of incorrect replies to M 32
Y Random variable for the number of incorrect replies to N 31
Z Random variable for the number of incorrect replies to M ∪ N . . 31
CDF Cumulative distribution function . 34
DNF Disjunctive Normal Form of a propositional logic formula 49
PMF Probability mass function . 32

Chapter 4

ψ An action performed by a malicious entity. 87
Ψ Set of all possible actions ψ of a malicious entity. 87
A Aging factor for the computation of a trust value 68
br*(sT) Best response to trustor’s strategy sT that minimizes utility of trustor

89
ρ Probability with which a source returns incorrect reply to a single re-

quest . 66
fa Fraction of malicious workers among all workers. 93
τ A service requested by the trustor. 87
ε Tolerance factor that defines when evidence should be combined 69
t Trust value as weighted average. 68
ti Trust value as exponential moving average, after i replies from a source.

68
ṫ Trust value with the idea of combined evidence. 69
ṫW3 estimate 1− ṫ, where ṫ is computed with weight (wi)i = (1) . . . 77
UA Expected utility of an attacker for an entire game. 87
UT Expected utility of a trustor for an entire game. 87
UA Utility of an attacker for a single round. 87
UT Utility of a trustor for a single round. 87
SA Set of all possible attack strategies, i.e., strategies of malicious entities.

87
ST Set of all possible trust model configurations. 87
wi Weight used for the computation of a trust value. 68

157

Nomenclature

Chapter 5

S Set of all available information sources 102
fa Fraction of colluding sources within S 101
mk Number of sources needed to form a majority for redundancy level k

101
k Redundancy level: to how many sources a request is made redundantly

101
θ Amplification exponent . 153
HS Voting history of sources in S . 106
CC Conditional collusion strategy . 103
CCm Conditional camouflage collusion strategy 103
pc Correlation in the voting history of two sources 104
UC Unconditional collusion strategy . 103
UCm Unconditional camouflage collusion strategy 103

158

Acknowledgments

First and foremost, I would like to thank my supervisor Thomas Engel, for enabling
me to do my PhD in his group, and for his great support throughout my studies.
I am also very thankful to Guillaume Muller and Leon van der Torre, further mem-
bers of my PhD Committee, for their excellent supervision. Moreover, I want to
thank Leon van der Torre and Uli Sorger for invaluable discussions in an important
phase of my work. I am very grateful to Claudia Eckert and Munindar P. Singh
for being members of my defense committee. I want to thank all the researchers,
with whom I have collaborated, to whom I owe inspiration, and from whom I have
learned a lot. Especially, I want to mention Volker Fusenig, Martin Rehák and Mar-
tin Caminada. Furthermore, I want to thank Dominic Dunlop for revising my thesis
and making helpful observations. My thanks go to all members of the SECAN-Lab
and the ICR group, who let me have a great time, and have been very inspiring to
me. I am thankful to all the friends that supported me during my PhD. Last but
not least, I want to thank our secretaries, who were always helpful, even when they
were overloaded with work.

I offer heartfelt thanks to my family and Astrid for their ceaseless support.

159

Author’s Publications

[FsS’08] Volker Fusenig, Eugen Staab, Uli Sorger, and Thomas Engel. Unlinkable
communication. In Larry Korba, Steve Marsh, and Reihaneh Safavi-Naini, ed-
itors, Proc. of the 6th Annual Conf. on Privacy, Security and Trust (PST ’08), pages
51–55. IEEE Computer Society, October 2008.
. Link: http://dx.doi.org/10.1109/PST.2008.8

[FsS’09] Volker Fusenig, Eugen Staab, Uli Sorger, and Thomas Engel. Slotted packet
counting attacks on anonymity protocols. In Ljiljana Brankovic and Willy Susilo,
editors, Proc. of the Australasian Information Security Conference (AISC ’09), vol-
ume 98 of CRPIT Series, pages 53–59. Australian Computer Society, 2009.

[RsF’09a] Martin Rehák, Eugen Staab, Volker Fusenig, Michal Pěchouček, Martin
Grill, Jan Stiborek, Karel Bartoš, and Thomas Engel. Runtime monitoring and
dynamic reconfiguration for intrusion detection systems. In E. Kirda, S. Jha, and
D. Balzarotti, editors, Recent Advances in Intrusion Detection: Proc. of the 12th Int.
Symposium On Recent Advances In Intrusion Detection (RAID ’09), volume 5758 of
LNCS, pages 61–80. Springer-Verlag, September 2009.
. Link: http://dx.doi.org/10.1007/978-3-642-04342-0_4

[RsF’09b] Martin Rehák, Eugen Staab, Volker Fusenig, Jan Stiborek, Martin Grill,
Karel Bartoš, Michal Pěchouček, and Thomas Engel. Threat-model driven run-
time adaptation and evaluation of intrusion detection system. In Proc. of the 6th
Int. Conf. on Autonomic Computing and Communications (ICAC ’09), pages 65–66.
ACM, June 2009.
. Link: http://dx.doi.org/10.1145/1555228.1555248

[RsP’09] Martin Rehák, Eugen Staab, Michal Pěchouček, Jan Stiborek, Martin Grill,
and Karel Bartoš. Dynamic information source selection for intrusion detection
systems. In K. S. Decker, J. S. Sichman, C. Sierra, and C. Castelfranchi, editors,
Proc. of the 8th Int. Conf. on Autonomous Agents & Multiagent Systems (AAMAS
’09), pages 1009–1016. IFAAMAS, May 2009.
. . . . Link: http://www.aamas-conference.org/Proceedings/aamas09/pdf/01_Full%
20Papers/20_113_FP_0488.pdf

[sC’09a] Eugen Staab and Martin Caminada. Assessing the impact of informedness
on a consultant’s profit. Technical report, University of Luxembourg, September
2009.
. Link: http://arxiv.org/abs/0909.0901/

160

http://dx.doi.org/10.1109/PST.2008.8
http://dx.doi.org/10.1007/978-3-642-04342-0_4
http://dx.doi.org/10.1145/1555228.1555248
http://www.aamas-conference.org/Proceedings/aamas09/pdf/01_Full%20Papers/20_113_FP_0488.pdf
http://www.aamas-conference.org/Proceedings/aamas09/pdf/01_Full%20Papers/20_113_FP_0488.pdf
http://arxiv.org/abs/0909.0901/

Author’s Publications

[sC’09b] Eugen Staab and Martin Caminada. Simulating knowledge and dishonesty
in a client-consultant setting. In Toon Calders, Karl Tuyls, and Mykola Pech-
enizkiy, editors, Proc. of the 21st Benelux Conf. on Artificial Intelligence (BNAIC
’09), pages 397–398, October 2009.
. . . . Link: http://wwwis.win.tue.nl/bnaic2009/papers/bnaic2009_paper_25.pdf

[sC’10] Eugen Staab and Martin Caminada. On the profitability of incompetence. In
Proc. of the 11th Workshop on Multi-Agent-Based Simulation (MABS ’10), 2010.

[sE’07] Eugen Staab and Thomas Engel. Formalizing excusableness of failures in
multi-agent systems. In Aditya Ghose, Guido Governatori, and Ramakoti
Sadananda, editors, Agent Computing and Multi-Agent Systems: Revised Papers
of the 10th Pacific Rim Int. Conf. on Multi-Agents (PRIMA ’07), volume 5044 of
LNCS (LNAI), pages 122–133. Springer-Verlag, November 2009.

[sE’08a] Eugen Staab and Thomas Engel. Combining cognitive and computational
concepts for experience-based trust reasoning. In Rino Falcone, Suzanne Barber,
Jordi Sabater, and Munindar Singh, editors, Proc. of the 11th Int. Workshop on
Trust in Agent Societies (TRUST ’08), pages 41–45. IFAAMAS, May 2008.

[sE’08b] Eugen Staab and Thomas Engel. Combining cognitive with computational
trust reasoning. In Rino Falcone, Suzanne Barber, Jordi Sabater, and Munindar
Singh, editors, Trust in Agent Societies: Revised Selected and Invited Papers of the
11th Int. Workshop on Trust in Agent Societies (TRUST ’08), volume 5396 of LNCS
(LNAI), pages 99–111. Springer-Verlag, December 2008.
. Link: http://dx.doi.org/10.1007/978-3-540-92803-4_6

[sE’09a] Eugen Staab and Thomas Engel. Collusion detection for distributed com-
puting. In Sjouke Mauw and Leendert van der Torre, editors, Proc. of the 1st
Luxembourg Day on Security and Reliability (P1Day ’09), page 75. University of
Luxembourg, February 2009.

[sE’09b] Eugen Staab and Thomas Engel. Collusion detection for grid computing.
In Franck Cappello, Cho-Li Wang, and Rajkumar Buyya, editors, Proc. of the 9th
IEEE/ACM Int. Symposium on Cluster Computing and the Grid (CCGrid ’09), pages
412–419. IEEE Computer Society, May 2009.
. Link: http://dx.doi.org/10.1109/CCGRID.2009.12

[sE’09c] Eugen Staab and Thomas Engel. Tuning evidence-based trust models. In
Proc. of the 2009 IEEE Int. Conf. on Information Privacy, Security, Risk and Trust
(PASSAT ’09), pages 92–99. IEEE Computer Society, August 2009.
. Link: http://dx.doi.org/10.1109/CSE.2009.209

[sFE’08a] Eugen Staab, Volker Fusenig, and Thomas Engel. Towards trust-based
acquisition of unverifiable information. In Matthias Klusch, Michal Pěchouček,
and Axel Polleres, editors, Cooperative Information Agents XII: Proc. of the 12th

161

http://wwwis.win.tue.nl/bnaic2009/papers/bnaic2009_paper_25.pdf
http://dx.doi.org/10.1007/978-3-540-92803-4_6
http://dx.doi.org/10.1109/CCGRID.2009.12
http://dx.doi.org/10.1109/CSE.2009.209

Author’s Publications

Int. Workshop on Cooperative Information Agents (CIA ’08), volume 5180 of LNCS
(LNAI), pages 41–54. Springer-Verlag, September 2008.
. Link: http://dx.doi.org/10.1007/978-3-540-85834-8_6

[sFE’08b] Eugen Staab, Volker Fusenig, and Thomas Engel. Using correlation for
collusion detection in grid settings. Technical Report 000657499, University of
Luxembourg, July 2008.

[sFE’08c] Eugen Staab, Volker Fusenig, and Thomas Engel. Trust-aided acquisition
of unverifiable information. In Malik Ghallab, Constantine D. Spyropoulos,
Nikos Fakotakis, and Nikolaos M. Avouris, editors, Proc. of the 18th European
Conf. on Artificial Intelligence (ECAI ’08), volume 178 of Frontiers in Artificial In-
telligence and Applications, pages 869–870. IOS Press, July 2008.
. Link: http://dx.doi.org/10.3233/978-1-58603-891-5-869

162

http://dx.doi.org/10.1007/978-3-540-85834-8_6
http://dx.doi.org/10.3233/978-1-58603-891-5-869

Bibliography

[1] distributed.net. http://www.distributed.net/. [Online; accessed 2010-01-
25].
. Cited on page 26.

[2] Folding@home. http://folding.stanford.edu/. [Online; accessed 2010-01-
25].
. Cited on pages 8 and 26.

[3] Great Internet Mersenne Prime Search (GIMPS). http://www.mersenne.org/.
[Online; accessed 2010-01-25].
. Cited on page 26.

[4] LHC@home. http://lhcathome.cern.ch/. [Online; accessed 2010-01-25].
. Cited on page 26.

[5] W3c web services glossary. http://www.w3.org/TR/ws-gloss/. [Online; ac-
cessed 2010-01-25].
. Cited on page 27.

[6] Wikipedia, The Free Encyclopedia. http://wikipedia.org/. [Online; accessed
2010-01-25].
. Cited on page 27.

[7] Alfarez Abdul-Rahman. The PGP trust model. EDI-Forum, 1997.
. Cited on page 20.

[8] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.
Wireless sensor networks: a survey. Computer Networks, 38(4):393–422, 2002.
. Cited on page 27.

[9] Carlos E. Alchourron, Peter Gärdenfors, and David Makinson. On the logic of
theory change: Partial meet functions for contraction and revision. Journal of
Symbolic Logic, 50:510–530, 1985.
. Cited on page 23.

[10] David P. Anderson. BOINC: A system for public-resource computing and
storage. In Proc. of the 5th IEEE/ACM Int. Workshop on Grid Computing (GRID
’04), pages 4–10. IEEE Computer Society, 2004.
. Cited on pages 8, 19, 26, and 100.

163

http://www.distributed.net/
http://folding.stanford.edu/
http://www.mersenne.org/
http://lhcathome.cern.ch/
http://www.w3.org/TR/ws-gloss/
http://wikipedia.org/

Bibliography

[11] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. SETI@home: an experiment in public-resource computing. Com-
munications of the ACM, 45(11):56–61, 2002.
. Cited on pages 8, 26, 41, 101, and 113.

[12] Donovan Artz and Yolanda Gil. A survey of trust in computer science and the
semantic web. Web Semant., 5(2):58–71, 2007.
. Cited on pages 20 and 119.

[13] Venkatesan Balakrishnan, Vijay Varadharajan, Phillip Lucs, and Udaya Kiran
Tupakula. Trust enhanced secure mobile ad-hoc network routing. In Proc. of
the 21st Int. Conf. on Advanced Information Networking and Applications (AINA
’07), Workshop Proceedings Vol. 2, pages 27–33. IEEE Computer Society, 2007.
. Cited on page 121.

[14] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Ma-
chine Learning, 56(1–3):89–113, 2004.
. Cited on page 106.

[15] Arash Baratloo, Mehmet Karaul, Zvi M. Kedem, and P. Wijckoff. Charlotte:
Metacomputing on the web. Future Generation Comp. Syst., 15(5-6):559–570,
1999.
. Cited on page 26.

[16] K. Suzanne Barber and Joonoo Kim. Belief revision process based on trust:
Agents evaluating reputation of information sources. In Trust in Cyber-societies:
Integrating the Human and Artificial Perspectives, volume 2246 of LNCS, pages
73–82. Springer-Verlag, 2001.
. Cited on page 120.

[17] Thomas Bayes. An essay toward solving a problem in the doctrine of chances.
Philosophical Transactions of the Royal Society of London, 53:370–418, 1763.
. Cited on page 31.

[18] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 2001.
. Cited on page 28.

[19] Elisa Bertino, Chenyun Dai, and Murat Kantarcioglu. The challenge of assur-
ing data trustworthiness. In Database Systems for Advanced Applications: Proc. of
the 14th Int. DASFAA Conference, volume 5463 of LNCS, pages 22–33. Springer-
Verlag, 2009.
. Cited on page 21.

[20] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experiments on graph
clustering algorithms. In Algorithms: 11th Annual ESA Symposium, volume 2832

164

Bibliography

of LNCS, pages 568–579. Springer, 2003.
. Cited on pages 106, 110, 114, and 115.

[21] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996.
. Cited on page 42.

[22] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks, 30(1-7):107–117, 1998.
. Cited on page 50.

[23] Sonja Buchegger and Jean-Yves Le Boudec. A robust reputation system for
mobile ad hoc networks. Technical Report IC/2003/50, EPFL-IC-LCA, CH-
1015 Lausanne, 2003.
. Cited on pages 119 and 121.

[24] Levente Buttyán, Péter Schaffer, and István Vajda. RANBAR: RANSAC-based
resilient aggregation in sensor networks. In Proc. of the 4th ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN ’06), pages 83–90. ACM, 2006.
. Cited on page 22.

[25] Levente Buttyán, Péter Schaffer, and István Vajda. Cora: Correlation-based
resilient aggregation in sensor networks. Ad Hoc Networks, 7(6):1035–1050,
2009.
. Cited on page 22.

[26] Vinny Cahill, Elizabeth Gray, Jean-Marc Seigneur, Christian D. Jensen, Yong
Chen, Brian Shand, Nathan Dimmock, Andy Twigg, Jean Bacon, Colin English,
Waleed Wagealla, Sotirios Terzis, Paddy Nixon, Giovanna di Marzo Seru-
gendo, Ciaran Bryce, Marco Carbone, Karl Krukow, and Mogens Nielsen. Us-
ing trust for secure collaboration in uncertain environments. IEEE Pervasive
Computing, 02(3):52–61, 2003.
. Cited on page 118.

[27] Martin Caminada. Truth, lies and bullshit; distinguishing classes of dishonesty.
In Proc. of the 1st IJCAI Workshop on Social Simulation (SS@IJCAI), 2009.
. Cited on page 65.

[28] Licia Capra and Mirco Musolesi. Autonomic trust prediction for pervasive
systems. In Proc. of the 20th Int. Conf. on Advanced Information Networking and
Applications (AINA ’06), Vol. 2, pages 481–488. IEEE Computer Society, 2006.
. Cited on pages 118 and 121.

[29] Cristiano Castelfranchi and Rino Falcone. Principles of trust for MAS: Cog-
nitive anatomy, social importance, and quantification. In Proc. of the 3rd Int.
Conf. on Multi-Agent Systems (ICMAS ’98), pages 72–79. IEEE Computer Soci-
ety, 1998.
. Cited on page 118.

165

Bibliography

[30] Cristiano Castelfranchi and Rino Falcone. Trust is much more than subjective
probability: Mental components and sources of trust. In Proc. of the 33rd Hawaii
Int. Conf. on System Sciences (HICSS ’00). IEEE Computer Society, 2000.
. Cited on page 118.

[31] Richard Chow, Philippe Golle, Markus Jakobsson, Lusha Wang, and XiaoFeng
Wang. Making CAPTCHAs clickable. In Proc. of the 9th Workshop on Mobile
Computing Systems and Applications (HotMobile ’08), pages 91–94. ACM, 2008.
. Cited on page 17.

[32] Murat Şensoy and Pinar Yolum. Ontology-based service representation and
selection. IEEE Trans. Knowl. Data Eng., 19(8):1102–1115, 2007.
. Cited on page 63.

[33] Chenyun Dai, Dan Lin, Elisa Bertino, and Murat Kantarcioglu. An approach
to evaluate data trustworthiness based on data provenance. In Secure Data
Management: Proc. of the 5th VLDB SDM Workshop, volume 5159 of LNCS, pages
82–98. Springer-Verlag, 2008.
. Cited on page 21.

[34] Mehdi Dastani, Andreas Herzig, Joris Hulstijn, and Leendert van der Torre.
Inferring trust. In J. Leite and P. Torroni, editors, Computational Logic in Multi-
Agent Systems: Proc. of the 5th Int. CLIMA Workshop, volume 3487 of LNCS
(LNAI), pages 144–160. Springer-Verlag, 2005.
. Cited on page 119.

[35] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correla-
tion clustering in general weighted graphs. Theor. Comput. Sci., 361(2):172–187,
2006.
. Cited on page 106.

[36] Robert Demolombe. To trust information sources: a proposal for a modal log-
ical framework. In C. Castelfranchi and Y-H. Tan, editors, Trust and Deception
in Virtual Societies, pages 111–124. Kluwer Academic Publishers, 2001.
. Cited on pages 64 and 119.

[37] Jay L. Devore. Probability and Statistics for Engineering and the Sciences, Enhanced
Review Edition. Duxbury Press, seventh edition, 2008.
. Cited on page 140.

[38] Anind K. Dey. Providing Architectural Support for Building Context-Aware Ap-
plication. PhD thesis, College of Computing, Georgia Institute of Technology,
2000.
. Cited on page 63.

[39] Renata Dividino, Simon Schenk, Sergej Sizov, and Steffen Staab. Provenance,
trust, explanations - and all that other meta knowledge. Künstliche Intelligenz,

166

Bibliography

2009.
. Cited on page 21.

[40] John R. Douceur. The Sybil attack. In Revised Papers from the 1st Int. Workshop
on Peer-to-Peer Systems (IPTPS ’02), pages 251–260. Springer-Verlag, 2002.
. Cited on pages 17 and 62.

[41] Wenliang Du, Jing Jia, Manish Mangal, and Mummoorthy Murugesan.
Uncheatable grid computing. In Proc. of the 24th Int. Conf. on Distributed Com-
puting Systems (ICDCS’04), pages 4–11. IEEE Computer Society, 2004.
. Cited on pages 18 and 117.

[42] Claudiu Duma, Martin Karresand, Nahid Shahmehri, and Germano Caronni.
A trust-aware, P2P-based overlay for intrusion detection. In 3rd Int. Workshop
on P2P Data Management, Security and Trust (PDMST ’06), pages 692–697. IEEE
Computer Society, 2006.
. Cited on page 43.

[43] Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Scott Deerwester,
and Richard Harshman. Using latent semantic analysis to improve access to
textual information. In Proc. of the SIGCHI Conf. on Human Factors in Computing
Systems (CHI ’88), pages 281–285. ACM, 1988.
. Cited on page 133.

[44] Levent Ertöz, Eric Eilertson, Aleksandar Lazarevic, Pang-Ning Tan, Vipin Ku-
mar, Jaideep Srivastava, and Paul Dokas. The MINDS - Minnesota Intrusion
Detection System. In Next Generation Data Mining. MIT Press, 2004.
. Cited on page 52.

[45] Babak Esfandiari and Sanjay Chandrasekharan. On how agents make friends:
Mechanisms for trust acquisition. In Proc. of the 4th Workshop on Deception,
Fraud and Trust in Agent Societies (at AAMAS ’01), pages 27–34, 2001.
. Cited on page 118.

[46] Rino Falcone and Cristiano Castelfranchi. Social trust: a cognitive approach.
Trust and deception in virtual societies, pages 55–90, 2001.
. Cited on page 118.

[47] Gary William Flake, Robert Endre Tarjan, and Kostas Tsioutsiouliklis. Graph
clustering and minimum cut trees. Internet Mathematics, 1(4), 2004.
. Cited on pages 110 and 114.

[48] Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, 1998.
. Cited on page 116.

167

Bibliography

[49] Harry G. Frankfurt. On Bullshit. Princeton University Press, 2005.
. Cited on page 65.

[50] Yoav Freund and Robert E. Schapire. Experiments with a new boosting al-
gorithm. In Proc. of the 13th Int. Conf. on Machine Learning (ICML ’96), pages
148–156, 1996.
. Cited on page 42.

[51] Batya Friedman, Peter H. Kahn Jr., and Daniel C. Howe. Trust online. Commun.
of the ACM, 43(12):34–40, 2000.
. Cited on page 60.

[52] Nir Friedman and Joseph Y. Halpern. Belief revision: A critique. J. of Logic,
Lang. and Inf., 8(4), 1999.
. Cited on page 23.

[53] Drew Fudenberg and Jean Tirole. Game theory. MIT Press, Cambridge, MA,
1991.
. Cited on pages 87, 88, and 89.

[54] Karen Fullam, Tomas B. Klos, Guillaume Muller, Jordi Sabater, Andreas
Schlosser, Zvi Topol, K. Suzanne Barber, Jeffrey S. Rosenschein, Laurent Ver-
couter, and Marco Voss. A specification of the agent reputation and trust (ART)
testbed: experimentation and competition for trust in agent societies. In 4th
Int. Joint Conf. on Autonomous Agents & Multiagent Systems (AAMAS ’05), pages
512–518, 2005.
. Cited on page 121.

[55] Karen K. Fullam, Jisun Park, and K. Suzanne Barber. Trust-driven information
acquisition for secure and quality decision-making. In Proc. of Int. Conf. on
Integration of Knowledge Intensive Multi-Agent Systems (KIMAS ’05), pages 303–
310, 2005.
. Cited on page 119.

[56] Carol J. Fung, Olga Baysal, Jie Zhang, Issam Aib, and Raouf Boutaba. Trust
management for host-based collaborative intrusion detection. In Managing
Large-Scale Service Deployment: Proc. of the 19th IFIP/IEEE Int. DSOM Workshop,
volume 5273 of LNCS, pages 109–122. Springer Verlag, 2008.
. Cited on page 43.

[57] Carol J. Fung, Jie Zhang, Issam Aib, and Raouf Boutaba. Robust and scalable
trust management for collaborative intrusion detection. In Proc. of the 11th
IFIP/IEEE Int. Symp. on Integrated Network Management (IM ’09), pages 33–40.
IEEE Computer Society, 2009.
. Cited on page 43.

168

Bibliography

[58] Dov Gabbay, Gabriella Pigozzi, and Odinaldo Rodrigues. Belief revision, belief
merging and voting. In Proc. of the 7th Conf. on Logic and the Foundations of Games
and Decision Theory (LOFT ’06), pages 71–78, 2006.
. Cited on page 23.

[59] Diego Gambetta. Can we trust trust? In Diego Gambetta, editor, Trust: Making
and Breaking Cooperative Relations, chapter 13, pages 213–237. Basil Blackwell,
1988. Reprinted in electronic edition from Department of Sociology, University
of Oxford.
. Cited on page 20.

[60] Cécile Germain-Renaud and Dephine Monnier-Ragaigne. Grid result check-
ing. In Proc. of the 2nd Conf. on Computing Frontiers (CF ’05), pages 87–96. ACM,
2005.
. Cited on pages 12, 18, 40, and 117.

[61] Yolanda Gil and Donovan Artz. Towards content trust of web resources. In
Proc. of the 15th Int. Conf. on World Wide Web (WWW ’06), pages 565–574. ACM,
2006.
. Cited on page 119.

[62] Andrew V. Goldberg and Kostas Tsioutsiouliklis. Cut tree algorithms: An
experimental study. Journal of Algorithms, 38(1):51–83, 2001.
. Cited on page 111.

[63] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, 1989.
. Cited on pages 25 and 87.

[64] Philippe Golle. Machine learning attacks against the Asirra CAPTCHA. In
Proc. of the 15th ACM Conf. on Computer and Communications Security (CCS ’08),
pages 535–542. ACM, 2008.
. Cited on page 17.

[65] Philippe Golle and Stuart G. Stubblebine. Secure distributed computing in a
commercial environment. In Proc. of the 5th Int. Conf. on Financial Cryptography
(FC ’01), pages 289–304. Springer-Verlag, 2002.
. Cited on pages 8, 23, and 26.

[66] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of SIAM,
9:551–570, 1961.
. Cited on page 111.

[67] Daniel Lombraña González, Francisco Fernández de Vega, and Henri
Casanova. Characterizing fault tolerance in genetic programming. In Proc.
of the 2009 Workshop on Bio-Inspired Algorithms for Distributed Systems (BADS

169

Bibliography

’09), pages 1–10, 2009.
. Cited on page 25.

[68] Tyrone Grandison and Morris Sloman. Trust management tools for internet
applications. In Proc. of the 1st Int. Conf. on Trust Management (iTrust ’03), pages
91–107. Springer-Verlag, 2003.
. Cited on page 62.

[69] Sven Ove Hansson. A survey of non-prioritized belief revision. Erkenntnis,
50:413–427, 1999.
. Cited on page 23.

[70] Morten Hertzum, Hans H. K. Andersen, Verner Andersen, and Camilla B.
Hansen. Trust in information sources: seeking information from people, doc-
uments, and virtual agents. Interacting with Computers, 14(5):575–599, 2002.
. Cited on page 119.

[71] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of attack and
defense techniques for reputation systems. ACM Computing Surveys, 41, 2009.
. Cited on pages 18, 21, and 62.

[72] Thomas Hofmann. Probabilistic latent semantic indexing. In Proc. of the 22nd
annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval
(SIGIR ’99), pages 50–57. ACM, 1999.
. Cited on page 133.

[73] John H. Holland. Adaptation in natural and artificial systems. MIT Press, Cam-
bridge, MA, USA, 1992.
. Cited on page 25.

[74] Trung Dong Huynh, Nicholas R. Jennings, and Nigel R. Shadbolt. An inte-
grated trust and reputation model for open multi-agent systems. Auton. Agents
Multi-Agent Syst., 13(2):119–154, 2006.
. Cited on pages 119 and 121.

[75] Mihaela Ion, Andrea Danzi, Hristo Koshutanski, and Luigi Telesca. A peer-to-
peer multidimensional trust model for digital ecosystems. In Proc. of the 2nd
IEEE Int. Conf. on Digital Ecosystems and Technologies, pages 461–469, 2008.
. Cited on page 121.

[76] Ramaprabhu Janakiraman, Marcel Waldvogel, and Qi Zhang. Indra: A peer-
to-peer approach to network intrusion detection and prevention. In Proc. of the
12th IEEE Int. Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE ’03), Workshop on Enterprise Security (ES), pages 226–231.
IEEE Computer Society, 2003.
. Cited on page 43.

170

Bibliography

[77] Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge University
Press, 2003.
. Cited on pages 29, 32, and 66.

[78] Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241–
254, 1967.
. Cited on page 106.

[79] Audun Jøsang and Roslan Ismail. The beta reputation system. In Proc. of the
15th Bled Conf. on Electronic Commerce, pages 324–337, 2002.
. Cited on pages 71, 76, and 119.

[80] Radu Jurca and Boi Faltings. Mechanisms for making crowds truthful. J. Artif.
Intell. Res., 34:209–253, 2009.
. Cited on page 23.

[81] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
EigenTrust algorithm for reputation management in P2P networks. In Proc.
of the 12th Int. World Wide Web Conference (WWW ’03), pages 640–651. ACM,
2003.
. Cited on pages 18, 21, and 100.

[82] George Karypis and Euihong Han. Concept indexing: A fast dimensionality
reduction algorithm with applications to document retrieval and categoriza-
tion. Technical Report TR-00-0016, University of Minnesota, 2000.
. Cited on page 133.

[83] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires,
9:5–83(Jan.)& 161–191(Feb.), 1883.
. Cited on page 88.

[84] Reid Kerr and Robin Cohen. Smart cheaters do prosper: defeating trust and
reputation systems. In Proc. of the 8th Int. Conf. on Autonomous Agents & Multi-
agent Systems (AAMAS ’09), pages 993–1000. IFAAMAS, 2009.
. Cited on page 63.

[85] Michael Kinateder, Ernesto Baschny, and Kurt Rothermel. Towards a generic
trust model - comparison of various trust update algorithms. In Proc. of the
3rd Int. Conf. on Trust Management (iTrust ’05), pages 177–192. Springer-Verlag,
2005.
. Cited on pages 62, 119, and 121.

[86] Michael Kinateder and Kurt Rothermel. Architecture and algorithms for a
distributed reputation system. In Proc. of the 1st Int. Conf. on Trust Management
(iTrust’03), pages 1–16. Springer-Verlag, 2003.
. Cited on page 63.

171

Bibliography

[87] Tomas B. Klos and Han La Poutré. Decentralized reputation-based trust for as-
sessing agent reliability under aggregate feedback. In Proc. of the 17th Belgium-
Netherlands Conf. on Artificial Intelligence (BNAIC ’05), pages 357–358, 2005.
. Cited on pages 119 and 121.

[88] Derrick Kondo, Filipe Araujo, Paul Malecot, Patrı́cio Domingues, Luı́s Moura
Silva, Gilles Fedak, and Franck Cappello. Characterizing result errors in inter-
net desktop grids. In Euro-Par 2007 Parallel Processing: Proc. of the 13th European
EURO-PAR Conference, volume 4641 of LNCS, pages 361–371. Springer-Verlag,
2007.
. Cited on pages 71, 83, 102, 103, 116, 131, 132, and 153.

[89] Justin Kruger and David Dunning. Unskilled and unaware of it: How difficul-
ties in recognizing one’s own incompetence lead to inflated self-assessments.
Journal of Personality and Social Psychology, 77(6):1121–1134, 1999.
. Cited on page 57.

[90] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-
wide traffic anomalies. In Proc. of the 2004 Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM ’04), pages
219–230. ACM, 2004.
. Cited on page 52.

[91] Anukool Lakhina, Mark Crovella, and Christophe Diot. Mining anomalies us-
ing traffic feature distributions. In Proc. of the 2005 Conf. on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications (SIGCOMM
’05), pages 217–228. ACM, 2005.
. Cited on page 52.

[92] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.
. Cited on page 16.

[93] Aleksandar Lazarevic, Levent Ertöz, Vipin Kumar, Aysel Ozgur, and Jaideep
Srivastava. A comparative study of anomaly detection schemes in network
intrusion detection. In Proc. of the 3rd SIAM Int. Conf. on Data Mining (SDM
’03), pages 25–36. SIAM, 2003.
. Cited on page 42.

[94] Vladimir Iosifovich Levenshtein. Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics–Doklady, 10(8):707–710, 1966.
. Cited on page 125.

[95] Brian Neil Levine, Clay Shields, and N. Boris Margolin. A survey of solutions
to the Sybil attack. Technical Report 2006-052, University of Massachusetts
Amherst, 2006.
. Cited on page 17.

172

Bibliography

[96] Jian Liang, Rakesh Kumar, Y. Xi, and Keith W. Ross. Pollution in P2P file
sharing systems. In Proc. of the 24th Annual Joint Conf. of the IEEE Computer and
Communications Societies (INFOCOM ’05), pages 1174–1185. IEEE, 2005.
. Cited on page 26.

[97] Churn-Jung Liau. Belief, information acquisition, and trust in multi-agent
systems: a modal logic formulation. Artif. Intell., 149(1):31–60, 2003.
. Cited on page 119.

[98] Seymour Lipschutz and Marc Lars Lipson. Probability. Schaum’s Outline Se-
ries. McGraw-Hill, second edition, 2000.
. Cited on page 51.

[99] Stephen Paul Marsh. Formalising Trust as a Computational Concept. PhD thesis,
University of Stirling, 1994.
. Cited on pages 9 and 20.

[100] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In Information
Security and Cryptology: Revised Selected Papers of the 8th Int. ICISC Conference,
volume 3935 of LNCS, pages 186–198. Springer Verlag, 2006.
. Cited on page 49.

[101] D. Harrison McKnight and Norman L. Chervany. The meanings of trust. Tech-
nical report, University of Minnesota, 1996.
. Cited on page 62.

[102] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund M. Clarke, and
Jeannette M. Wing. Ranking attack graphs. In Recent Advances in Intrusion
Detection: Proc. of the 9th Int. RAID Symposium, volume 4219 of LNCS, pages
127–144. Springer-Verlag, 2006.
. Cited on page 50.

[103] Dejan S. Milojičić, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja, Jim Pruyne,
Bruno Richard, Sami Rollins, and Zhichen Xu. Peer-to-peer computing. Tech-
nical Report HPL-2002-57 (R.1), HP Laboratories Palo Alto, 2002.
. Cited on page 26.

[104] Cleve B. Moler. A tale of two numbers. SIAM News, 28(1):16, January 1995.
. Cited on page 103.

[105] David Molnar. The SETI@home problem. ACM Crossroads: E-commerce, 7(1),
2000.
. Cited on pages 8, 26, and 100.

[106] Andrew P. Moore, Robert J. Ellison, and Richard C. Linger. Attack modeling
for information security and survivability. Technical Report CMU/SEI-2001-
TN-001, CMU Software Engineering Institute, 2001.
. Cited on page 47.

173

Bibliography

[107] David S. Moore. The Basic Practice of Statistics. W. H. Freeman & Co., New
York, NY, USA, fourth edition, 2007.
. Cited on pages 18, 44, 107, and 140.

[108] Greg Mori and Jitendra Malik. Recognizing objects in adversarial clutter:
Breaking a visual CAPTCHA. In Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR ’03), pages 134–144. IEEE Computer Society, 2003.
. Cited on page 17.

[109] Lik Mui, Mojdeh Mohtashemi, and Ari Halberstadt. A computational model
of trust and reputation for e-businesses. In Proc. of the 35th Annual Hawaii Int.
Conf. on System Sciences (HICSS ’02), pages 188–196. IEEE Computer Society,
2002.
. Cited on page 119.

[110] Guillaume Muller and Laurent Vercouter. L.I.A.R.: Achieving social control in
open and decentralised multi-agent systems. Technical Report 2008-700-001,
École des Mines de Saint-Étienne, 2008.
. Cited on page 119.

[111] Gia Hien Nguyen, Philippe Chatalic, and Marie-Christine Rousset. A proba-
bilistic trust model for semantic peer-to-peer systems. In Proc. of the 18th Eur.
Conf. on Artificial Intelligence (ECAI ’08), pages 881–882. IOS Press, 2008.
. Cited on page 119.

[112] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors.
Algorithmic Game Theory. Cambridge University Press, 2007.
. Cited on page 62.

[113] Warren B. Powell. Approximate Dynamic Programming. John Wiley & Sons, Inc.,
first edition, 2007.
. Cited on pages 64 and 82.

[114] Bartosz Przydatek, Dawn Song, and Adrian Perrig. SIA: secure information
aggregation in sensor networks. In Proc. of the 1st Int. Conf. on Embedded Net-
worked Sensor Systems (SenSys ’03), pages 255–265. ACM, 2003.
. Cited on page 22.

[115] W.V. Quine. A way to simplify truth functions. American Mathematical Monthly,
62(9):627–631, 1955.
. Cited on page 49.

[116] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, third edition, 2002.
. Cited on page 22.

174

Bibliography

[117] Sarvapali D. Ramchurn, T. D. Huynh, and Nicholas R. Jennings. Trust in multi-
agent systems. Knowl. Eng. Rev., 19(1):1–25, 2004.
. Cited on pages 20, 58, and 119.

[118] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Schenker. A scalable content-addressable network. In Proc. of the 2001 Conf.
on Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations (SIGCOMM ’01), pages 161–172. ACM, 2001.
. Cited on page 28.

[119] Martin Rehák and Michal Pěchouček. Trust modeling with context representa-
tion and generalized identities. In Proc. of the 11th Int. Workshop on Cooperative
Information Agents (CIA ’07), pages 298–312. Springer-Verlag, 2007.
. Cited on page 63.

[120] Martin Rehák, Michal Pěchouček, Martin Grill, Jan Stiborek, Karel Bartoš,
and Pavel Čeleda. Adaptive multiagent system for network traffic monitor-
ing. IEEE Intelligent Systems, 24(3):16–25, 2009.
. Cited on pages 41, 42, and 52.

[121] Martin Rehák, Eugen Staab, Volker Fusenig, Michal Pěchouček, Martin Grill,
Jan Stiborek, Karel Bartoš, and Thomas Engel. Runtime monitoring and dy-
namic reconfiguration for intrusion detection systems. In E. Kirda, S. Jha, and
D. Balzarotti, editors, Recent Advances in Intrusion Detection: Proc. of the 12th Int.
Symposium On Recent Advances In Intrusion Detection (RAID ’09), volume 5758
of LNCS, pages 61–80. Springer-Verlag, September 2009.
. Cited on page 30.

[122] Martin Rehák, Eugen Staab, Volker Fusenig, Jan Stiborek, Martin Grill, Karel
Bartoš, Michal Pěchouček, and Thomas Engel. Threat-model driven runtime
adaptation and evaluation of intrusion detection system. In Proc. of the 6th
Int. Conf. on Autonomic Computing and Communications (ICAC ’09), pages 65–66.
ACM, June 2009.
. Cited on page 30.

[123] Martin Rehák, Eugen Staab, Michal Pěchouček, Jan Stiborek, Martin Grill, and
Karel Bartoš. Dynamic information source selection for intrusion detection
systems. In K. S. Decker, J. S. Sichman, C. Sierra, and C. Castelfranchi, editors,
Proc. of the 8th Int. Conf. on Autonomous Agents & Multiagent Systems (AAMAS
’09), pages 1009–1016. IFAAMAS, May 2009.
. Cited on page 30.

[124] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. GroupLens: an open architecture for collaborative filtering of netnews.
In Proc. of the 1994 ACM Conf. on Computer Supported Cooperative Work (CSCW

175

Bibliography

’94), pages 175–186. ACM, 1994.
. Cited on page 131.

[125] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman. Reputa-
tion systems. Commun. ACM, 43(12):45–48, 2000.
. Cited on pages 21 and 59.

[126] C. J. Van Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 1979.
. Cited on page 112.

[127] Jean-Louis Roch and Sébastien Varrette. Probabilistic certification of divide
& conquer algorithms on global computing platforms: application to fault-
tolerant exact matrix-vector product. In Proc. of the Int. Wksh. on Parallel Sym-
bolic Computation (PASCO ’07), pages 88–92. ACM, 2007.
. Cited on pages 18 and 117.

[128] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In Proc. of the
IFIP/ACM Int. Conf. on Distributed Systems Platforms Heidelberg (Middleware ’01),
pages 329–350. Springer-Verlag, 2001.
. Cited on page 28.

[129] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, second edition, 2003.
. Cited on pages 25 and 91.

[130] Jordi Sabater and Carles Sierra. REGRET: Reputation in gregarious societies.
In Proc. of the 4th Workshop on Deception, Fraud and Trust in Agent Societies, pages
194–195. ACM Press, 2001.
. Cited on page 119.

[131] Jordi Sabater and Carles Sierra. Review on computational trust and reputation
models. Artif. Intell. Rev., 24(1):33–60, 2005.
. Cited on page 119.

[132] Luis F. G. Sarmenta. Volunteer computing. PhD thesis, Massachusetts Institute
of Technology, 2001.
. Cited on pages 24, 25, and 26.

[133] Luis F. G. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing
systems. Future Generation Comp. Syst., 18(4):561–572, 2002.
. Cited on pages 12, 16, 18, and 116.

[134] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement
study of peer-to-peer file sharing systems. In Proc. of the SPIE/ACM Conf. on
Multimedia Computing and Networking (MMCN ’02), 2002.
. Cited on page 26.

176

Bibliography

[135] Reginald E. Sawilla and Xinming Ou. Identifying critical attack assets in de-
pendency attack graphs. In Computer Security: Proc. of the 13th European ES-
ORICS Symposium, volume 5283 of LNCS, pages 18–34. Springer-Verlag, 2008.
. Cited on page 50.

[136] Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The semantic web revis-
ited. IEEE Intelligent Systems, 21(3):96–101, 2006.
. Cited on page 28.

[137] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jean-
nette M. Wing. Automated generation and analysis of attack graphs. In Proc.
of the 2002 IEEE Symposium on Security and Privacy (SP ’02), page 273. IEEE
Computer Society, 2002.
. Cited on page 50.

[138] Gheorghe Cosmin Silaghi, Filipe Araujo, Luis Moura Silva, Patricio
Domingues, and Alvaro Arenas. Defeating colluding nodes in desktop grid
computing platforms. In Proc. of the 2nd Workshop on Desktop Grids and Volun-
teer Computing (PCGrid ’08). IEEE Computer Society, 2008.
. Cited on pages 14, 115, and 118.

[139] Suresh Singh, Mike Woo, and C. S. Raghavendra. Power-aware routing in
mobile ad hoc networks. In Proc. of the 4th Annual ACM/IEEE Int. Conf. on
Mobile Computing and Networking (MobiCom ’98), pages 181–190. ACM, 1998.
. Cited on page 27.

[140] Michael Sipser. Introduction to the Theory of Computation. Int. Thomson Publish-
ing, 1996.
. Cited on page 61.

[141] Murray R. Spiegel, John Schiller, and R. Alu Srinivasan. Probability and Statis-
tics. Schaum’s Outline Series. McGraw-Hill, third edition, 2009.
. Cited on pages 44, 139, 140, and 141.

[142] Avinash Sridharan, Tao Ye, and Supratik Bhattacharyya. Connectionless port
scan detection on the backbone. In Proc. of the 25th IEEE Int. Performance Com-
puting and Communications Conference (IPCCC ’06), Workshop on Malware, pages
567–576. IEEE, 2006.
. Cited on page 52.

[143] Eugen Staab and Martin Caminada. On the profitability of incompetence. In
Proc. of the 11th Workshop on Multi-Agent-Based Simulation (MABS ’10), 2010.
. Cited on page 27.

[144] Eugen Staab and Thomas Engel. Combining cognitive and computational con-
cepts for experience-based trust reasoning. In Rino Falcone, Suzanne Barber,
Jordi Sabater, and Munindar Singh, editors, Proc. of the 11th Int. Workshop on

177

Bibliography

Trust in Agent Societies (TRUST ’08), pages 41–45. IFAAMAS, May 2008.
. Cited on page 56.

[145] Eugen Staab and Thomas Engel. Combining cognitive with computational
trust reasoning. In Rino Falcone, Suzanne Barber, Jordi Sabater, and Munindar
Singh, editors, Trust in Agent Societies: Revised Selected and Invited Papers of the
11th Int. Workshop on Trust in Agent Societies (TRUST ’08), volume 5396 of LNCS
(LNAI), pages 99–111. Springer-Verlag, December 2008.
. Cited on page 56.

[146] Eugen Staab and Thomas Engel. Collusion detection for distributed comput-
ing. In Sjouke Mauw and Leendert van der Torre, editors, Proc. of the 1st
Luxembourg Day on Security and Reliability (P1Day ’09), page 75. University of
Luxembourg, February 2009.
. Cited on page 100.

[147] Eugen Staab and Thomas Engel. Collusion detection for grid computing. In
Franck Cappello, Cho-Li Wang, and Rajkumar Buyya, editors, Proc. of the 9th
IEEE/ACM Int. Symposium on Cluster Computing and the Grid (CCGrid ’09), pages
412–419. IEEE Computer Society, May 2009.
. Cited on page 100.

[148] Eugen Staab and Thomas Engel. Formalizing excusableness of failures in
multi-agent systems. In Aditya Ghose, Guido Governatori, and Ramakoti
Sadananda, editors, Agent Computing and Multi-Agent Systems: Revised Papers
of the 10th Pacific Rim Int. Conf. on Multi-Agents (PRIMA ’07), volume 5044 of
LNCS (LNAI), pages 122–133. Springer-Verlag, November 2009.
. Cited on pages 56 and 61.

[149] Eugen Staab and Thomas Engel. Tuning evidence-based trust models. In
Proc. of the 2009 IEEE Int. Conf. on Information Privacy, Security, Risk and Trust
(PASSAT ’09), pages 92–99. IEEE Computer Society, August 2009.
. Cited on page 56.

[150] Eugen Staab, Volker Fusenig, and Thomas Engel. Towards trust-based ac-
quisition of unverifiable information. In Matthias Klusch, Michal Pěchouček,
and Axel Polleres, editors, Cooperative Information Agents XII: Proc. of the 12th
Int. Workshop on Cooperative Information Agents (CIA ’08), volume 5180 of LNCS
(LNAI), pages 41–54. Springer-Verlag, September 2008.
. Cited on pages 30 and 56.

[151] Eugen Staab, Volker Fusenig, and Thomas Engel. Trust-aided acquisition
of unverifiable information. In Malik Ghallab, Constantine D. Spyropoulos,
Nikos Fakotakis, and Nikolaos M. Avouris, editors, Proc. of the 18th European
Conf. on Artificial Intelligence (ECAI ’08), volume 178 of Frontiers in Artificial In-
telligence and Applications, pages 869–870. IOS Press, July 2008.
. Cited on pages 30 and 56.

178

Bibliography

[152] Eugen Staab, Volker Fusenig, and Thomas Engel. Using correlation for col-
lusion detection in grid settings. Technical Report 000657499, University of
Luxembourg, July 2008.
. Cited on page 100.

[153] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for internet appli-
cations. In Proc. of the 2001 Conf. on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM ’01), pages 149–160. ACM,
2001.
. Cited on page 28.

[154] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer net-
works. In Proc. of the 6th ACM SIGCOMM Conf. on Internet Measurement (IMC
’06), pages 189–202. ACM, 2006.
. Cited on page 124.

[155] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.
. Cited on page 68.

[156] M. Taufer, D. Anderson, P. Cicotti, and C. L. Brooks III. Homogeneous redun-
dancy: a technique to ensure integrity of molecular simulation results using
public computing. In Proc. of the 19th IEEE Int. Parallel and Distributed Process-
ing Symposium (IPDPS ’05) - Workshop 1, page 119.1. IEEE Computer Society,
2005.
. Cited on pages 26 and 125.

[157] W. T. Luke Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck. Travos:
Trust and reputation in the context of inaccurate information sources. Auton.
Agents Multi-Agent Syst., 12(2):183–198, 2006.
. Cited on pages 21, 118, and 119.

[158] C.-K. Toh. Ad Hoc Wireless Networks: Protocols and Systems. Prentice Hall PTR,
2001.
. Cited on page 27.

[159] Stijn van Dongen. Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, 2000.
. Cited on pages 110 and 114.

[160] Pedro B. Velloso, Rafael P. Laufer, Otto Carlos M. B. Duarte, and Guy Pujolle.
A trust model robust to slander attacks in ad hoc networks. In Proc. of the Work-
shop in Advanced Networking and Communications (ANC), at ICCCN ’08, 2008.
. Cited on page 121.

179

Bibliography

[161] Mohit Virendra, Murtuza Jadliwala, Madhusudhanan Chandrasekaran, and
Shambhu Upadhyaya. Quantifying trust in mobile ad-hoc networks. In Proc.
of the IEEE Int. Conf. on Integration of Knowledge Intensive Multiagent Systems
(KIMAS ’05), pages 65–70. IEEE Computer Society, 2005.
. Cited on page 121.

[162] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
CAPTCHA: Using hard AI problems for security. In Advances in Cryptology:
Proc. of the Int. EUROCRYPT Conference, volume 2656 of LNCS, pages 294–311.
Springer-Verlag, 2003.
. Cited on page 17.

[163] Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and
Manuel Blum. reCAPTCHA: human-based character recognition via web se-
curity measures. Science, 321(5895):1465–1468, 2008.
. Cited on page 125.

[164] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17:395–416, 2007.
. Cited on page 106.

[165] David Wagner. Resilient aggregation in sensor networks. In Proc. of the 2nd
ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN ’04), pages
78–87. ACM, 2004.
. Cited on pages 22 and 27.

[166] Yao Wang and Julita Vassileva. Trust and reputation model in peer-to-peer
networks. In Proc. of the 3rd Int. Conf. on Peer-to-Peer Computing (P2P ’03), page
150. IEEE Computer Society, 2003.
. Cited on page 121.

[167] Yonghong Wang and Munindar P. Singh. Formal trust model for multiagent
systems. In Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI ’07),
pages 1551–1556, 2007.
. Cited on pages 13, 70, 72, 75, 118, 119, 128, and 136.

[168] Hal Wasserman and Manuel Blum. Software reliability via run-time result-
checking. J. ACM, 44(6):826–849, 1997.
. Cited on pages 22 and 26.

[169] Gerhard Weiss, editor. Multiagent systems: a modern approach to distributed arti-
ficial intelligence. MIT Press, Cambridge, MA, USA, 1999.
. Cited on page 23.

[170] Eric W. Weisstein. Beta distribution. http://mathworld.wolfram.com/

BetaDistribution.html. [From MathWorld–A Wolfram Web Resource; ac-
cessed 2010-01-25].
. Cited on page 67.

180

http://mathworld.wolfram.com/BetaDistribution.html
http://mathworld.wolfram.com/BetaDistribution.html

Bibliography

[171] Eric W. Weisstein. Beta function. http://mathworld.wolfram.com/

BetaFunction.html. [From MathWorld–A Wolfram Web Resource; accessed
2010-01-25].
. Cited on page 67.

[172] Andrew Whitby, Audun Jøsang, and Jadwiga Indulska. Filtering out unfair
ratings in Bayesian reputation systems. In Proc. of the 7th Int. Workshop on Trust
in Agent Societies (at AAMAS ’04), 2004.
. Cited on pages 119 and 121.

[173] Jonathan Wilkins. Strong CAPTCHA guidelines, v1.2. http://www.bitland.

net/captcha.pdf, December 2009. [Online; accessed 2010-02-22].
. Cited on page 125.

[174] Mark Witkowski and Jeremy Pitt. Objective trust-based agents: Trust and
trustworthiness in a multi-agent trading society. In Proc. of the 4th Int. Conf.
on Multi-Agent Systems (ICMAS ’00), pages 463–464. IEEE Computer Society,
2000.
. Cited on page 119.

[175] Michael Woolridge. Introduction to Multiagent Systems. John Wiley & Sons, Inc.,
2001.
. Cited on page 23.

[176] Li Xiong and Ling Liu. A reputation-based trust model for peer-to-peer ecom-
merce communities. In Proc. of the 5th Int. Conf. on Electronic Commerce (EC ’03),
pages 228–229. ACM, 2003.
. Cited on page 121.

[177] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for peer-
to-peer electronic communities. IEEE Trans. Knowl. Data Eng., 16(7):843–857,
2004.
. Cited on pages 21 and 120.

[178] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Reducing unwanted traf-
fic in a backbone network. In Proc. of the Steps to Reducing Unwanted Traffic on
the Internet Workshop (SRUTI ’05), pages 8–14. USENIX Association, 2005.
. Cited on page 52.

[179] Jeff Yan and Ahmad Salah El Ahmad. A low-cost attack on a Microsoft
CAPTCHA. In Proc. of the 15th ACM Conf. on Computer and Communications
Security (CCS ’08), pages 543–554. ACM, 2008.
. Cited on page 17.

[180] Bin Yu and Munindar P. Singh. Detecting deception in reputation manage-
ment. In Proc. of the 2nd Int. Joint Conf. on Autonomous Agents & Multiagent

181

http://mathworld.wolfram.com/BetaFunction.html
http://mathworld.wolfram.com/BetaFunction.html
http://www.bitland.net/captcha.pdf
http://www.bitland.net/captcha.pdf

Bibliography

Systems (AAMAS ’03), pages 73–80. ACM, 2003.
. Cited on page 59.

[181] Matthew Yurkewych, Brian N. Levine, and Arnold L. Rosenberg. On the cost-
ineffectiveness of redundancy in commercial P2P computing. In Proc. of the
12th Conf. on Computer and Communications Security (CCS ’05), pages 280–288.
ACM, 2005.
. Cited on pages 23 and 122.

[182] Giorgos Zacharia. Collaborative reputation mechanisms for online communi-
ties. Master’s thesis, Massachusetts Institute of Technology, 1999.
. Cited on page 119.

[183] Min Zhang, Wolfgang John, K. Claffy, and Nevil Brownlee. State of the art in
traffic classification: A research review. In Proc. of the 10th Int. Conf. on Passive
and Active Measurement (PAM ’09), Student Workshop, 2009.
. Cited on page 26.

[184] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical Report
UCB/CSD-01-1141, University of California at Berkeley, 2001.
. Cited on page 28.

[185] Shanyu Zhao, Virginia Lo, and Chris GauthierDickey. Result verification and
trust-based scheduling in peer-to-peer grids. In Proc. of the 5th IEEE Int. Conf.
on Peer-to-Peer Computing (P2P ’05), pages 31–38. IEEE Computer Society, 2005.
. Cited on pages 13, 18, 35, 72, 116, and 122.

[186] Charikleia Zouridaki, Brian L. Mark, Marek Hejmo, and Roshan K. Thomas.
Robust cooperative trust establishment for MANETs. In Proc. of the 4th ACM
Workshop on Security of Ad Hoc and Sensor Networks (SASN ’06), pages 23–34.
ACM, 2006.
. Cited on page 121.

182

	Abstract
	Introduction
	Problem Statement and Objectives
	Objectives and Methodology
	Requirements
	Scope

	Contributions
	Spot-Checking with Challenges (Chapter 3)
	Computational Trust in Information Sources (Chapter 4)
	Replication (Chapter 5)

	Organization

	Background and State of the Art
	Historical Development
	Fault and Sabotage Tolerance
	Byzantine Fault Tolerance
	The Sybil Attack

	State of the Art: Ensuring Information Correctness
	Spot-Checking
	Redundancy
	Trust and Reputation Systems
	Plausibility Checking
	Symbolic Approaches
	Incentive Compatibility
	Encrypted Computation and Code Obfuscation
	Inherent Fault and Sabotage Tolerance

	Problem Scenarios
	Terminology and Notations
	Basic Classification of Information Sources
	Notations

	Spot-Checking with Challenges
	Mechanism
	Procedure
	Correctness Estimates
	Accept Decision
	Creation of Challenges

	Optimal Number of Challenges
	Analysis
	Security Analysis
	Efficiency

	Runtime Evaluation and Adaptation of an IDS
	Evaluation of Aggregators
	Adaptive Number of Challenges
	Threat-Model Driven Challenge Selection
	Evaluation

	Modeling Trust in Information Sources
	Computational Trust Modeling
	Trust
	Modeling Trust
	Trust in Information Sources

	Evidence-Based Trust in Information Sources
	Basic Model
	Evaluation of Basic Model
	Reducing Number of Challenges
	Trust-Based Selection of Sources

	Tuning Evidence-Based Trust Models
	Trust Model Deployment as Game
	Tuning Procedure
	Application

	Collusion Detection for Redundant Requesting
	Redundant Requesting and Collusion
	Model and Assumptions
	Plurality Voting
	Attacker models

	Collusion Detection Algorithm
	Estimating Correlation
	Clustering
	Algorithm

	Theoretical Analysis
	Computing Correlation
	Correlation as Similarity
	Undetectable Attack

	Evaluation
	Accuracy
	Computational Complexity and Running Time

	Dealing with Suspects

	Related Work and Comparisons
	Related Work
	Spot-Checking
	Collusion Detection
	Trust Modeling

	Comparative Study
	Applicability
	Accuracy
	Robustness
	Overhead and Complexity

	Common Issues
	High Churn Rates
	Dealing with Inhomogeneous Sources

	Combination

	Summary and Perspectives
	Spot-Checking with Challenges (Chapter 3)
	Modeling Trust in Information Sources (Chapter 4)
	Collusion Detection for Redundant Requesting (Chapter 5)
	Summary of Main Contributions
	Strengths and Challenges
	Further Work
	Spot-Checking
	Trust Model
	Redundant Requesting and Collusion Detection

	Proofs
	Posterior Distribution
	Expected Damage
	Uncertainty

	Computing Margins of Error
	Margin of Error for Means
	Margin of Error for Standard Deviations
	One-Sided Margins Of Error

	Damage of Attack Classes
	Results of Trust Model Tuning
	Correlation of Sources
	Computing Correlation
	Case UCm Attackers
	Case CCm Attackers
	Figures

	Amplification

	Nomenclature
	Acknowledgments
	Author's Publications
	Bibliography

